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SUMMARY 

Secondary tropical forests are largely dominated by small-diameter trees. Their contribution to the total stand 

productivity may be determinant for ecosystem functioning. However, the biomass contained in small-size trees is 

frequently ignored because they are rarely included in forest inventories, as well as due to the lack of biomass equations 

for such trees. The aim of this study was to generate specific biomass equations by tree structural components and 

total-tree biomass for 22 species (diameter at breast height-DBH ≤ 10 cm diameter) structurally important of secondary 

tropical forests in southeast Yucatán peninsula. The biomass equations were generated using two fitting approaches. 

First, using the additive approach where the biomass equations by structural tree components (stem, branches and 

foliage) were simultaneously fitted. Second, the tree-level approach where the total-tree biomass was independently 

fitted. We used DBH, total height (TH) and wood density (WD) as predictor variables during the fitting process. The 

performance of each total-tree biomass equation was compared to generalized biomass equations developed in other 

tropical forests. The variance explained of observed biomass across tree species were stem, 64% to 99%; branch, 24% 

to 95%; foliage, 35% to 94% for equations by structural tree components; while the explained variance for total tree 

biomass equations was between 94 to 99 %. The inclusion of TH and WD as predictor variables in the equation 

structure, significantly improved the goodness of fit statistics. These are the first equations developed for small-size 

tree species in secondary forests of Yucatán peninsula. We observed that generalized equations developed for other 

tropical forests, in some cases overestimated up to ~ 44.2% and in other cases underestimated up to ~ 48.4% the mean 

total-tree biomass. When we applied our equations to forest inventory data, they showed a better predicting 

performance than generalized equations. Therefore, they are reliable for estimating biomass of small-size tree species 

in similar forest types. Our equations could be used for biomass-carbon estimation in tropical secondary forests 

composed by high densities of small-size tree species; therefore, they are relevant within climate change contexts. 

Keywords: Allometric equations; biomass stocks; additive system equations; simultaneous fitting; non-linear models; 

wood density. 

RESUMEN 

Los bosques tropicales secundarios generalmente están dominados en gran parte por árboles de diámetros-pequeños. 

Su contribución a la productividad total puede ser relevante para el funcionamiento de los ecosistemas. Sin embargo, 

la biomasa contenida en los árboles-pequeños frecuentemente es ignorada debido a que rara vez son incluidos en los 

inventarios forestales, así como y por la falta de ecuaciones de biomasa para ellos. El objetivo de este estudio fue 

generar ecuaciones-específicas de biomasa por componente estructural del árbol y biomasa total-árbol para 22 especies 

(diámetro normal-DBH ≤ 10 cm) estructuralmente importantes de los bosques secundarios dl sureste de la Península 

de Yucatán. Las ecuaciones de biomasa se generaron usando dos enfoques de ajuste. Primero, usando el enfoque 

aditivo se ajustaron simultáneamente las ecuaciones de biomasa por componente estructural del árbol; fuste, ramas y 
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follaje. Segundo, con el enfoque a nivel árbol se ajustó de manera independiente la biomasa total árbol. En el proceso 

de ajuste se utilizó el DBH, la altura total del árbol (TH) y la densidad de la madera como variables independientes. El 

desempeño de cada ecuación de biomasa total-árbol se comparó contra aquel de ecuaciones de biomasa generalizadas 

desarrolladas para otras regiones tropicales. La varianza de la biomasa observada explicada por las ecuaciones aditivas 

para las especies incluidas en este estudio fue: fuste, 64% a 99%; ramas, 24% a 95%; follaje, 35% hasta 94%; mientras 

que la varianza explicada de la ecuación de biomasa total fue entre 94 a 99%. La inclusión de TH y WD como variables 

independientes en la estructura de las ecuaciones, mejoraron significativamente los estadísticos de bondad de ajuste. 

Estas ecuaciones son las primeras que se desarrollan para especies de diámetros-pequeños en bosques secundarios de 

la península de Yucatán. Las ecuaciones generalizadas desarrolladas para otros bosques tropicales sobreestimaron en 

algunos casos hasta ~ 44.2% y en otros casos subestimaron ~ 48.4% de la biomasa total promedio por árbol. Cuando 

aplicamos las ecuaciones a datos de inventario, estas presentaron una capacidad predictiva mejor que las ecuaciones 

generalizadas. Por tanto, las ecuaciones ajustadas son confiables para estimar la biomasa de tipos de bosques similares. 

Las ecuaciones desarrolladas pueden ser utilizadas para estimar la biomasa ycarbono de bosques tropicales secundarios 

compuestos por una alta densidad de especies con diámetros pequeños; por tanto, consideramos que son relevante en 

el contexto de cambio climático.  

Palabras clave: Ecuaciones alométricas; existencias de biomasa; sistema de ecuaciones aditivas; ajuste simultáneo; 

modelos no-lineales; densidad de la madera. 

 

INTRODUCTION 

 

The interest of secondary tropical forests is increasing, 

not only for its extension or its role in biodiversity 

conservation, but also for its high resilience in biomass 

recovering from anthropogenic and natural 

disturbances (Chazdon et al., 2010; Memiaghe et al., 

2016; Poorter et al., 2016). Very often, the biomass 

estimation in tropical forests have been based only 

with data of large trees (> 10 cm DBH) leaving small-

size trees (DBH < 10 cm) unaccounted, since the 

common assumption is that small-size tree biomass is 

less than 5% of large-size tree biomass (Lugo and 

Brown, 1992; Chave et al., 2003; Vincent et al., 2015). 

However, this assumption may not be applicable for all 

tropical forests because they are highly dynamic and 

their structure re the result of different factors (Vincent 

et al., 2015; Chazdon, 2003; Poorter et al., 2016). For 

instance, land use change leads to heterogeneous 

landscapes and canopy variations dominated by 

secondary forests that contain greater number of small-

size trees(here denoted as trees 1 cm ≤ DBH ≤ 10 cm) 

(Chave et al., 2003; Dupuy et al., 2012a; Memiaghe et 

al., 2016). Small-size trees are important component of 

the diversity of woody plants of secondary tropical 

forests and they can contribute significantly to the total 

stand biomass (Dupuy et al., 2012a; Memiaghe et al., 

2016). 

 

The secondary forests of the Yucatan peninsula in 

Mexico are dominated for small-size tress. In absolute 

values, the density of individuals > 5 cm DBH in 

forests of Campeche range from 1 000 to 3 422 trees 

per hectare in stands of 5 to 20 years-old, and if 

individuals > 2 DBH are included, the tree density may 

reach up to 4 000 trees per hectare (Schmook, 2010; 

Román-Dañobeytia et al., 2014). In relative values, the 

contribution of small-trees to the total density per unit 

area, has been reported in the order of 2.4% to 60% 

(Zamora et al., 2008; Gutiérrez-Báez et al., 2013). In 

other secondary tropical forests, for example in China, 

Kenia, Papua New Guinea, Costa Rica, and Panamá, 

small trees can reach 25% to 93.6% of the total tree 

density (Chave et al., 2003; Brandeis et al., 2006; 

Kuyah et al., 2012; Vincent et al., 2015; Memiaghe et 

al., 2016; He et al., 2018). Regarding tree biomass, 

small trees contribute between 3.6% up to 35.05% 

depending on the forest successional stage (Alief, 

2012; Kuyah et al., 2012; Lima et al., 2012; Memiaghe 

et al., 2016). These observations are consistent with 

the idea that small-size trees can show a high variation 

in their contribution to the overall biomass. 

 

The accurate biomass estimation of tropical forests 

depends on the quality of the allometric equations for 

structural tree components such as stem, branch and 

foliage, and total-tree biomass (Chave et al., 2005; 

Dong et al., 2014). Methods for estimating tree 

biomass could be classified into allometric equations 

at tree-level, structural component-level, and additive 

biomass equations (Parresol, 2001; Sanquetta et al., 

2015b; Zhang et al., 2017; Bi et al., 2004). The tree-

level method involves an independent modelling to 

estimate total-tree biomass directly, but lacks accurate 

information of stem, branches, and foliage biomass. 

The structural component-level, represents also an 

independent modelling and, total-tree biomass is 

obtained by summing up the biomass estimation by 

tree structural components. However, summing up the 

biomass estimation of structural components can 

diverge from total-tree biomass. Therefore, the 

additive method that consists in fitting the biomass 

data by structural components simultaneously, 

eliminates the inconsistency of the sum of the biomass 

by structural tree components on the same sampled 

trees. Thus, the total-tree biomass is the sum of the 

biomass of structural tree components.  

 

Many studies mentioned that in tropical natural forests 

where hundreds of species coexist per hectare it is 

impractical to represent each specie with its own 

allometric biomass equation (Pappoe et al., 2010; 
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Gibbs et al., 2007). While other authors indicate that 

specific-species can provide more accurate estimates 

of biomass and that help reflect better the real biomass 

in species-rich tropical ecosystems (Fehrmann and 

Kleinn, 2006; Henry et al., 2010; Kebede and 

Soromessa, 2018; Chaturvedi et al., 2012). Specific-

species equations are critical to evaluate the 

productivity of secondary tropical forests through 

tracking changes in the biomass stocks (Navar, 2009c; 

van Breugel et al., 2011; Cai et al., 2013; Cairns et al., 

2003). Also, are key tools to understand the role of 

secondary tropical forests in the global carbon cycle 

through biomass estimations needed for accurate 

determination of carbon storage and fluxes (Litton and 

Boone, 2008; Navar, 2009c). In tropical regions, 

specific-species equations have been generated mainly 

for commercial species (Singh et al., 2011; Cai et al., 

2013; Zhang et al., 2017). For natural forests they are 

scarce, but currently there are many works carried out 

in Costa Rica, Brazil, and India (Segura and Kanninen, 

2005; Chaturvedi et al., 2012; Araújo et al., 2018). In 

Mexico, the species specific equations have been 

generated in temperate and warm tropical forests 

stands by Navar (2009c), Douterlungne et al. (2013), 

Cairns et al. (2003), and Vargas-Larreta et al. (2017). 

Particularly, Cairns et al. (2003) generated 15 

equations for species-specific in forests of southern 

Yucatán peninsula: nine for trees with DBH ≤ 10 cm, 

six for trees > 10 cm in DBH; as well they generated 

aa generic equation for tree species with DBH > 10 cm. 

The range of applicability of the equations developed 

by Cairns et al. (2003) for trees ≤ 10 cm in DBH is 

limited, due to the high species richness of small-size 

tree species that characterize the secondary tropical 

forests in the studied region. Besides, the equations 

were generated for old-growth stands species. Thus, 

the generic equation developed by Hughes et al. (1999) 

in the central-east, México, and Chave et al. (2003) 

equation in Panamá are widely used in the tropical 

forests of México to estimate biomass of trees with 

DBH ≤ 10 cm. However, the performance Hughes et 

al. (1999) and Chave et al. (2003) equations has not 

yet been evaluated with other equations generated for 

small-size trees in forests of the Yucatán peninsula. 

Therefore, the objectives of this study were (1) to 

develop specific-species equations under an additive 

system equations approach by tree structural 

components (stem, branch and foliage) (2) to develop 

allometric equations for total-tree biomass and (3) to 

compare the performance of the developed equations 

on biomass estimation to generalized equations 

developed for other tropical regions by Hughes et al. 

(1999) and Chave et al. (2003). The following 

hypotheses were tested: a) equations that include the 

total tree height (TH) and wood density (WD) as 

independent variables, besides DBH, provide better 

goodness of fit statistics than simpler equations (i.e. 

based on one or two predictors), since they include in 

their structure the effect of the allometric 

characteristics and wood properties that determine the 

species growth form; and b) specific equations 

developed in this study are more accurate to estimate 

total tree biomass at specie level, since it includes the 

effects biometric characteristics of local species (i.e. 

through DBH, TH and WD), than those generalized 

equations developed in other tropical regions. 

 

MATERIALS AND METHODS 

 

Study area 

 

This study was conducted across of southeast region of 

the Yucatán peninsula, Mexico. It is located between 

the Sian Ka'an Biosphere Reserve in Quintana Roo 

(19° 05' y 20° 06' north, 87° 30' y 87° 58' west) and 

Calakmul Reserve in Campeche (19° 15' y 17° 45' 

north, 90° 10' y 89° 15' west) (Figure 1). The Calakmul 

Biosphere Reserve is the largest conservation area of 

rainforest in the Mexican tropics (~ 7, 231.85 km2) 

(González-Jaramillo et al., 2016). We located 

secondary tropical forests stands that ranging from 

nine to 35 years-old and an old-growth stand (more 80-

year-old) for tree-biomass harvesting. The stands were 

used previously for “slash and burn agriculture (maize, 

beans and squash) system”. 

 

The dominant ecosystem type is mid-stature and semi-

evergreen tropical forest (Pennington and Sarukhán, 

2005; Miranda and Hernández-Xolocotzi, 1963). The 

climate is tropical subhumid with mean annual rainfall 

between 948 and 1500 mm, most of which falls in the 

summer, while the dry months (april to march) 

typically have less than 60 mm of rainfall. The mean 

annual temperature is about 26° C with extremes of 36 

°C to 38 °C in the driest months (García, 2003; 

Lawrence, 2005). There is a hurricane season from 

June to November, and the highest incidence occurs 

between August and October (Islebe et al., 2009; 

McGroddy et al., 2013). The topography is mostly flat 

with some places with slight inclination. Dominant 

soils are classified as gleysoles, vertic cambisols and 

vertic luvisols; they are thin and shallow, resulting in a 

slow water drainage and surface flooding’s in the rainy 

season during storms or hurricanes (Ellis and Porter-

Bolland, 2008).  
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Measurements of aboveground biomass 

 

Biomass data was collected from harvesting 311 trees 

of 22 tree species of 1 cm ≤ DBH ≤ 10 cm (Table 1). 

The 22 species were selected based on the importance 

value index-IVI (Curtis and McIntosh, 1951) in a pre-

assessment in the same study region. The index-IVI 

was determined for each species by summing the 

species relative frequency, relative density, and 

relative dominance 

 

 
Figure 1. Location of the study site in the southeast Yucatán peninsula. 

 

Table 1. Tree species sampled to fit allometric biomass equations in secondary tropical forests of the southeast Yucatán 

peninsula. 

Species name N 
DBH  

range (cm) 

TH  

range (m) 

Wood 

density (g cm-3) 
Class 

Lonchocarpus rugosus 13 1.4 - 10 3.1 - 11 0.80 (± 0.03) H 

Pouteria campechiana 14 1.6 – 9.9 2.5 – 11 0.79 (± 0.02) H 

Malmea depressa 13 1.5 – 10 3.1 – 10 0.78 (± 0.01) H 

Pouteria unilocularis 17 1.2 – 10 2.9 – 11.3 0.78 (± 0.01) H 

Chrysophyllum mexicanum 15 1.2 - 9.9 2.7 - 12 0.77 (± 0.01) H 

Lonchocarpus xuul 12 1.4 – 9.9 2.15 – 10.6 0.76 (± 0.02) H 

Psidium sartorianum 13 1.3 – 9.5 2.8 – 13.4 0.75 (± 0.02) H 

Coccoloba diversifolia 13 1.3 – 9.9 1.5 – 11.8 0.74 (± 0.03) H 

Croton reflexifolius 15 1.3 – 9.8 2.8 – 11.2 0.72 (± 0.002) H 

Brosimum alicastrum 14 1.2 – 10 2.8 – 11.2 0.71 (± 0.02) H 

Dipholis salicifolia 18 1.1 – 9.9 2.5 – 10.7 0.69 (± 0.01) H 

Luehea speciosa 12 1.4 – 10 2.8 – 10.4 0.67 (± 0.02) H 

Guettarda combsii 17 1.2 – 10 2.2 – 10.4 0.64 (± 0.01) H 

Swartzia cubensis 14 1.1 – 8.9 2.45 – 11 0.63 (± 0.03) H 

Piscidia piscipula 15 1.2 – 10 2.2 – 10.8 0.62 (± 0.02) H 

Zuelania guidonia 14 1.1 - 10 2.2 – 12.2 0.62 (± 0.01) H 

Lysiloma latisiliquum 15 1.3 – 10 2.6 – 11.2 0.61 (± 0.02) H 

Licaria campechiana 16 1.4 – 9.9 3.2 – 9.6 0.61 (± 0.01) I 

Vitex gaumeri 12 1.2 – 10 2.75 – 10.6 0.52 (± 0.04) I 

Simarouba glauca 14 1.4 – 9.8 2.8 – 9.9 0.42 (± 0.01) L 

Bursera simaruba 12 1.5 – 10 3.1 – 10 0.29 (± 0.02) L 

Cecropia peltata 12 1.1 – 9.9 2.2 – 9 0.25 (± 0.02) L 

N = number of trees; DBH = range in diameter at breast height (cm); TH = range in total tree height (m); wood density 

in g cm−3 = Class= Wood density class (H is hight, I = is intermediate, and L is low).  
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Based on the index-IVI values, between 12 to 18 trees 

for each specie were selected and harvested. Before 

felling the trees, DBH was measured with a diametric 

tape. After felling, TH (equal to the length of the stem) 

was measured with a long fiberglass tape. For biomass 

calculations; fresh weight for each component by tree 

(i.e. stem, branches, and foliage) were obtained with an 

electronic scale TORREY CRS-HD of 500 kg capacity 

(± 100 g). Three random samples ~ 100 g of stem, 

branches, and foliage were obtained with an electronic 

scale OHAUS Pionnertm 5 kg capacity (accuracy ± 0.1 

g), respectively (Wang, 2006; Basuki et al., 2009; 

Gómez-García et al., 2013). The fresh samples of stem 

(disks of about 5 cm thick) were cut from the base, 

middle and upper part of the stem (Bastien-Henri et al., 

2010; Picard et al., 2012). To determine WD (g.cm-3), 

samples were taken from each tree at 1.30 m from the 

base of the stem (Henry et al., 2010; Nam et al., 2016). 

The WD was calculated as green volume/dry mass for 

each sample. The green volume was measured by the 

water displacement method (Chave et al., 2006). The 

stem, branches and foliage of trees ≤ 2.5 cm DBH were 

sent entirely at laboratory. All samples were oven-

dried at 70° C until they reached constant dry mass. 

Dry mass of stem, branches and foliage were 

calculated on the basis of the fresh mass with the 

average fresh to dry mass ratio of each component. The 

total tree aboveground biomass (kg) was calculated by 

adding up the total dry weight of three structural 

components of each tree. 

 

The harvested tree species were classified in three WD 

classes (Table 1) according Sotomayor et al. 

(Sotomayor et al., 2010): low (≤ 0.40 g. cm-3), 

intermediate (0.41-0.60 g.cm-3) and high (≥ 0.61 g.cm-

3). These classes were used because the density values 

are associated with the wood quality. Likewise, WD is 

considered as an economic indicator -for the industry- 

and a good wood descriptor to study the species 

ecological behavior (Chave et al., 2006; Sotomayor et 

al., 2010). 

 

Fitting and evaluation of allometric equations 

 

Total-tree biomass was modeled with independent 

variables of DBH, TH and WD from eight regression 

models (Table 2) previously tested in other studies for 

estimating tree-total biomass (Hughes et al., 1999; 

Ketterings et al., 2001; Cairns et al., 2003; Bi et al., 

2004; Chave et al., 2005; Urquiza-Haas et al., 2007; 

Chave et al., 2014; Soriano-Luna et al., 2015): 

 

We used an independent fitting to estimates coefficient 

parameters of models applying the Newton’s iterative 

method with nls function and fit technique Ordinary 

Least Squares (OLS) in R software (R Development 

Core Team). Weighting regressions were applied to the 

models to improve the homogeneity of variance and 

the goodness-fit-statistics (Parresol, 2001; Álvarez-

González et al., 2007). 

 

 

Table 2. Regression models tested to fit allometric biomass equations in secondary tropical forests of the southeast 

Yucatán peninsula. 

No. Allometric model 

1 AGB = exp(−β0)(DBH2TH)β1 + εi 

2 AGB = β0(WDDBH2TH)β1 + εi 

3 AGB = [β0 + β1ln(DBH2TH)] (
WD

0.72
) + εi 

4 AGB = exp[β0 + β1ln(WDDBH2TH)] + εi 

5 AGB = exp[β0 + β1ln(DBH2TH)] + εi 

6 AGB = exp [−β
0

+ β
1

ln(DBH2H) +
β

2

2
] + εi 

7 AGB = 0.11β0DBH2+β1 + εi 

8 AGB = exp[β0 + β1ln(DBH2)] (
CF

106
) + εi 

AGB = aboveground biomass (kg), βS
′ = parameters to be estimated in the fitting process, WD = wood density 

(g. cm−3), DBH = diameter at breast height (cm); TH = total height (m), and exp = exponential function, ln = natural 

logarithmic function, CF = correction factor, CF = exp (
MSE

2
), MSE = mean square error. We assumed that the error 

terms are distributed independent and identically distributed as ε~N(0, σe
2). 
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Equation validation and simultaneous fitting 

 

The goodness of fit-statistics: (i) root mean square 

error of the estimate (RMSE), (ii) the proportion of 

variance explained by model corrected by the number 

of parameters estimated (adjusted R2) and (iii) were 

used to select the best regression models (Johnson and 

Omland, 2004; Ngomanda et al., 2014). We used the 

Akaike Information Criterion (AIC) only to select the 

best model from Table 2. Overall, the best model was 

the one which had low (RMSE) and (AIC), and high 

R2 (Mugasha et al., 2016).  

 

The best selected model was fitted simultaneously to 

generate equations by tree structural components. 

Then, equation for total-tree biomass is a function of 

the independent variables in the equations for 

structural component, including constraints on the 

parameters of the model, and can be expressed as: 

 

AGBstem = f(WD, DBH, TH, β) + εAGBstem   (1) 

AGBbranch = f(WD, DBH, TH, β) + εAGBbranches 

AGBfoliage = f(WD, DBH, TH, β) + εAGBfoliage 

AGBtotal−tree = f(WD, DBH, TH, β) + εAGBtotal−tree 

 

Where: 

 

AGB = above-ground biomass (kg); β = vector of 

regression parameters to be estimated, DBH = 

diameter at breast height (cm), TH = total tree height 

(m), WD = wood density (g.cm-3) for each specie. We 

assumed that the error terms are distributed 

independent and identically distributed as ε~N(0, σe
2). 

The parameter vector was calculated using an iterative 

convergence process with Newton´s algorithm (SAS 

Institute Inc., 2011). The simultaneous fitting, was 

performed using the generalized least squares method 

called nonlinear seemingly unrelated regressions 

(NSUR) iteratively applying the ITSUR option of 

PROC MODEL in SAS (SAS Institute Inc., 2011; 

Sanquetta et al., 2015b). Once the models were fitted 

and the residuals were obtained, it is very common to 

detect heteroscedasticity in the residuals (Álvarez-

González et al., 2007). In order, to correct this 

problem, we fitted models using weighted regression 

to improve homogeneity of variances and guarantee 

models additivity (Clutter et al., 1983; Parresol, 1999; 

Magalhães and Seifert, 2015). 

 

Independent modelling 

 

From the selected models, developed also specific-

species equations to estimate total-tree biomass. 

Likewise, we compared total-tree biomass observed 

against the total-tree biomass estimated with specific-

species equations and, generic equations generated by 

Hughes et al. (1999) (2) and Chave et al. (2003) (3). 

Besides, the performance of each equations this study 

versus the generalized equations of Hughes et al. 

(1999) and Chave et al. (2003) was evaluated: 

 

AGB = exp[4.9375 + 1.0583 ln(DBH2)] (
1.14

106
) 

AGB = WD/WDavexp[−1.839 + 2.116ln(DBH)] 
 

Where: 

 

 AGB = aboveground biomass (kg), DBH = diameter 

at breast height (cm), TH = total tree height (m); 

exp = exponential function, ln = natural logarithmic 

function, WD = wood density (g. cm−3) and WDav = 

wood density mean of the evaluated plot 

(0.54 g. cm−3). 

 

We selected the Hughes et al. (1999) and Chave et al. 

(2003) generalized equations to evaluate their 

performance in comparison with equations developed 

in this study. Hughes et al. (1999) and Chave et al. 

(2003) equations were generated for a mixture tree 

species with DBH ≤ 10 cm, which is the same size 

range trees used in this study. Hughes et al. (1999) 

equation was developed for a tropical forest in central-

east, México, and its application is based only in DBH 

as biomass predictor variable. Chave et al. (2003) 

equation, also was developed to estimate biomass of 

small trees in tropical forests of Panamá, it is a re-

parametrization of Hughes et al. (1999) model, and it 

includes the WD as a second independent variable, in 

addition to DBH. We anticipated the addition of WD 

as biomass predictor to be beneficial for models 

performance and accuracy. However, let us believe 

that Hughes et al. (1999) and Chave et al. (2003) 

equations has a disadvantage, that its application is 

limited outside the forests of central-east, México and 

Panamá owing variables used in both equations are 

linked or express the biometric characteristics of forest 

species where the two equations were developed.  

 

Specific-species equations developed in this study, 

Hughes et al. (1999), and Chave et al. (2003) equations 

relative mean error (RME %) was calculated as 

validation criteria of performance of the allometric 

models (Djomo et al., 2010; Chave et al., 2014; 

Goodman et al., 2014) (4): 

 

RME (%) = (∑(ABĜPred − ABGobs)/ABGobs)

n

i=1

× 100) 

Where: 

 

 AGB̂pred and AGBobs are the sum of the predicted and 

observed biomass for each tree species. 
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The RME (%) were computed using leave-one-out 

cross-validation for specific-species equations 

developed in this study, and Hughes et al. (1999) and 

Chave et al. (2003)) equations (Efron and Tibshirani, 

1993). The principle of the leave-one-out method was 

to fit the model from 𝑛 − 1 observations and calculate 

the RME (%) to the observation leave out (data not 

included in the training) or data validation (Efron and 

Tibshirani, 1993; Sileshi, 2014). The leave-one-out 

cross-validation was carried out for each species (22 

total). Negative and positive values of the RME (%), 

indicate underestimation and overestimation of the 

biomass for a set of trees (Kuyah et al., 2012; 

Goodman et al., 2014). We used Kruskal-Wallis test at 

95% confidence intervals with kruskal.test function of 

the “stats” package in R (R Development Core Team) 

to analyze differences in total-tree biomass estimate, 

and RME (%) values between equations. Furthermore, 

accuracy of the biomass equations of this study and, 

Hughes et al. (1999) and Chave et al. (2003) equations 

was analyzed with a linear regression between the 

predicted and observed biomass values (without 

intercept) using the lm function in R (R Development 

Core Team). If the models correctly fit the data then 

the slope of the estimated coefficient should be around 

one; values that are not around one indicates lack of fit 

of the model (Piñeiro et al., 2008; Sileshi, 2014). 

 

RESULTS 

 

Biomass fitted equations 

 

Results of goodness of fit statistics as modeling 

performance criteria for total-tree biomass of all data 

sets (22 tree species) are presented in Table 3. All 

allometric models fit well to total-tree biomass, and 

most of them explained more than 90% of the observed 

biomass variance. Considering the smaller values of 

RMSE, AIC, and higher R2, the model I and II showed 

the best fit compared to the other models. The 

estimated coefficients parameters were significantly 

different from zero in all species-specific equations, 

which suggest that among the variable combined of 

model I (DBH2H) and II (WDDBH2TH) exist a strong 

relationship with total-tree biomass. 

 

Biomass equations by structural components 

 

The weighting regression 
1

Dn2H
 was adequate to 

improve the homogeneity of variance and goodness of 

fit statistics of the two models. Simultaneous fitting by 

tree structural component biomass was carried out 

using the model I structure (Table 4), because it 

showed the best goodness of fit statistics since the 

parameter estimates into the system of equations for 

each specie converged iteratively using the option 

ITSUR. According to the RMSE an R2 values, the 

allometric equations were more accurate for stem and 

total-tree biomass across 22 species than branch and 

foliage biomass. The observed biomass variance 

explained by fitting the model I by tree structural 

components was: stem, between 64% and 99%; 

branch, 24% to 95%; foliage, 35% up to 94%, 

respectively. While, total-tree biomass equations 

explained 60% to 99% of the total observed biomass 

variance. Specifically, model I explained less than 

70% the observed biomass variance for three 

components: stem biomass of Bursera simaruba 

(64%); branch biomass in B. simaruba (24%) and 

Piscidia piscipula (66%); and, foliage biomass in 

Lonchocarpus xuul (35%), Zuelania guidonia (57%) 

and Psidium sartorianum (58%). 

 

Table 3. Goodness of fit statistics for the allometric models fit to 22 tree species ≤ 10 cm diameter of secondary tropical 

forests of southeast Yucatan peninsula. 

No. Allometric model RMSE R2 AIC 

1 AGB = exp(−β0)(DBH2TH)β1 + εi 11.15 0.94 1509.87 

2 AGB = β0(WDDBH2TH)β1 + εi 11.35 0.93 1511.81 

3 AGB = [β0 + β1ln(DBH2TH)] (
WD

0.72
) + εi 11.76 0.93 1520.21 

4 AGB = exp[β0 + β1ln(WDDBH2TH)] + εi 13.98 0.92 1570.87 

5 AGB = exp[β0 + β1ln(DBH2TH)] + εi 14.06 0.92 1572.56 

6 AGB = exp [−β0 + β1ln(DBH2H) +
β2

2
] + ε 16.64 0.91 1620.51 

7 AGB = 0.11β0DBH2+β1 + εi 17.05 0.91 1626.69 

8 AGB = exp[β0 + β1ln(DBH2)] (
CF

106
) + εi 11.56 0.82 1516.91 

AGB = aboveground biomass (kg), βS
′ = parameters to be estimated in the fitting, ρ = wood density (g. cm−3), DBH = 

diameter at breast height (cm); TH = total height (m), and exp = exponential function, ln = natural logarithmic 

function, CF = correction factor, CF = exp (
MSE

2
), MSE = mean square error. We assume that the error terms are 

distributed independent and identically distributed as ε~N(0, σe
2). 
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Table 4. Biomass equations and goodness of fit statistics by tree structural components for mall-size trees (≤ 10 cm 

DBH) in secondary tropical forests of southeast Yucatán peninsula. 

Biomass equation RMSE R2 Biomass equation RMSE R2 

Coccoloba diversifolia   Chrysophyllum mexicanum  data 
AGB̂s = exp(−3.124681)(DBH2TH)0.899196 1.66 0.97 AGB̂s = exp(−3.685836)(DBH2TH)0.983545 1.34 0.98 
AGB̂b = exp(−5.709513)(DBH2TH)1.180671 1.90 0.85 AGB̂b = exp(−4.202349)(DBH2TH)0.933029 0.88 0.95 
AGB̂f = exp(−4.430226)(DBH2TH)0.775745 0.40 0.88 AGB̂f = exp(−4.086912)(DBH2TH)0.737239 0.45 0.87 

AGB̂total = ∑ AGB̂i 1.99 0.98 AGB̂total = ∑ AGB̂i 1.81 0.98 

Malmea depressa   Psidium sartorianum   
AGB̂s = exp(−2.860974)(DBH2TH)0.883201 1.07 0.98 AGB̂s = exp(−3.257887)(DBH2TH)0.961469 2.37 0.93 
AGB̂b = exp(−4.024928)(DBH2TH)0.931261 1.27 0.88 AGB̂b = exp(−3.778556)(DBH2TH)0.960902 1.68 0.92 

AGB̂f = exp(−3.149323)(DBH2H)0.59191 0.47 0.67 AGB̂f = exp(−5.490508)(DBH2TH)1.00122 0.70 0.58 

AGB̂total = ∑ AGB̂i 1.99 0.97 AGB̂total = ∑ AGB̂i 2.26 0.98 

Piscidia piscipula   Lonchocarpus rugosus   
AGB̂s = exp(−3.215632)(DBH2TH)0.912652 1.00 0.99 AGB̂s = exp(−3.509758)(DBH2TH)0.997215 1.43 0.98 
AGB̂b = exp(−4.672663)(DBH2TH)0.99452 2.44 0.66 AGB̂b = exp(−4.530371)(DBH2TH)1.025384 1.41 0.92 
AGB̂f = exp(−4.849742)(DBH2TH)0.798602 0.48 0.70 AGB̂f = exp(−4.900705)(DBH2TH)0.818951 0.20 0.94 

AGB̂total = ∑ AGB̂i 3.32 0.95 AGB̂total = ∑ AGB̂i 1.51 0.99 

Pouteria campechiana   Luehea speciosa   
AGB̂s = exp(−3.795674)(DBH2TH)1.009806 1.93 0.96 AGB̂s = exp(−3.832639)(DBH2TH)1.002754 1.84 0.96 
AGB̂b = exp(−3.151849)(DBH2TH)0.791289 1.53 0.84 AGB̂b = exp(−4.422181)(DBH2TH)0.951072 1.00 0.92 
AGB̂f = exp(−4.306817)(DBH2TH)0.760773 0.44 0.75 AGB̂f = exp(−5.434142)(DBH2TH)0.0732 0.23 0.86 

AGB̂total = ∑ AGB̂i 2.42 0.97 AGB̂total = ∑ AGB̂i 3.05 0.95 

Swartzia cubensis   Licaria campechiana   
AGB̂s = exp(−3.749144)(DBH2TH)1.020441 0.97 0.98 AGB̂s = exp(−3.393522)(DBH2TH)0.929611 0.75 0.98 
AGB̂b = exp(−3.722729)(DBH2TH)0.847592 1.04 0.82 AGB̂b = exp(−4.731634)(DBH2TH)1.137827 1.49 0.95 
AGB̂f = exp(−4.472306)(DBH2TH)0.70327 0.18 0.86 AGB̂f = exp(−4.314631)(DBH2TH)0.928314 0.63 0.94 

AGB̂total = ∑ AGB̂i 1.45 0.98 AGB̂total = ∑ AGB̂i 2.10 0.98 

Simarouba glauca   Croton reflexifolius   
AGB̂s = exp(−3.209234)(DBH2TH)0.855711 1.04 0.95 AGB̂s = exp(−3.439344)(DBH2TH)0.959533 1.77 0.96 
AGB̂b = exp(−5.767766)(DBH2TH)1.196315 1.40 0.83 AGB̂b = exp(−3.486505)(DBH2TH)0.88975 1.16 0.95 
AGB̂f = exp(−3.876313)(DBH2TH)0.701125 0.37 0.81 AGB̂f = exp(−3.716394)(DBH2H)0.690435 0.36 0.88 

AGB̂total = ∑ AGB̂i 1.83 0.96 AGB̂total = ∑ AGB̂i 1.98 0.98 

Brosimum alicastrum   Zuelania guidonia   

AGB̂s = exp(−3.318339)(DBH2TH)0.921847 0.66 0.99 AGB̂s = exp(−3.358934)(DBH2TH)0.948296 2.13 0.95 

AGB̂b = exp(−4.113012)(DBH2TH)0.957334 1.54 0.88 AGB̂b = exp(−3.980664)(DBH2TH)0.913368 1.18 0.91 

AGB̂f = exp(−3.886258)(DBH2TH)0.754311 0.35 0.94 AGB̂f = exp(−3.3396)(DBH2TH)0.5804 0.53 0.57 

AGB̂total = ∑ AGB̂i 2.36 0.97 AGB̂total = ∑ AGB̂i 2.52 0.97 

Guettarda combsii   Lysiloma latisiliquum   

AGB̂s = exp(−3.73279)(𝐷𝐵𝐻2TH)0.996919 2.13 0.93 AGB̂s = exp(−4.7631)(𝐷𝐵𝐻2TH)1.104133 2.29 0.90 

AGB̂b = exp(−5.004871)(𝐷𝐵𝐻2TH)1.103206 1.26 0.94 AGB̂b = exp(−4.072008)(𝐷𝐵𝐻2TH)0.90777 1.79 0.76 

AGB̂f = exp(−5.979851)(𝐷𝐵𝐻2H)1.039449 0.45 0.85 AGB̂f = exp(−5.36503)(𝐷𝐵𝐻2TH)0.880951 0.58 0.60 

AGB̂total = ∑ 𝐴𝐺�̂�𝑖 1.46 0.99 AGB̂total = ∑ 𝐴𝐺�̂�𝑖 2.11 0.96 

Lonchocarpus xuul   Vitex gaumeri   

AGB̂s = exp(−3.210394)(DBH2TH)0.948648 1.08 0.99 AGB̂s = exp(−3.828804)(DBH2TH)0.9662 1.83 0.93 

AGB̂b = exp(−3.707644)(DBH2TH)0.965325 3.45 0.75 AGB̂b = exp(−5.986197)(DBH2TH)1.246886 1.20 0.94 

AGB̂f = exp(−4.73622)(DBH2TH)0.873947 1.05 0.35 AGB̂f = exp(−5.023044)(DBH2TH)0.939103 0.86 0.75 

AGB̂total = ∑ AGB̂i 5.13 0.92 AGB̂total = ∑ AGB̂i 0.68 0.99 

Dipholis salicifolia   Pouteria unilocularis   

AGB̂s = exp(−3.309925)(DBH2TH)0.926269 1.12 0.98 AGB̂s = exp(−3.27356)(DBH2TH)0.946922 1.35 0.98 

AGB̂b = exp(−3.996604)(DBH2TH)0.934711 2.29 0.77 AGB̂b = exp(−3.986981)(DBH2TH)1.003814 1.85 0.94 

AGB̂f = exp(−3.276665)(DBH2TH)0.584744 0.50 0.69 AGB̂f = exp(−3.887617)(DBH2TH)0.748158 0.65 0.80 
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AGB̂total = ∑ AGB̂i 1.66 0.98 AGB̂total = ∑ AGB̂i 2.50 0.98 

Bursera simaruba   Cecropia peltata   

AGB̂s = exp(−4.409187)(DBH2TH)1.052114 2.59 0.64 AGB̂s = exp(−4.191628)(DBH2TH)0.955756 0.43 0.98 

AGB̂b = exp(−4.045752)(DBH2TH)0.819727 1.04 0.24 AGB̂b = exp(−4.762545)(DBH2TH)0.98704 1.05 0.84 

AGB̂f = exp(−5.744795)(DBH2TH)0.864666 0.12 0.88 AGB̂f = exp(−6.308533)(DBH2TH)0.92592 0.13 0.83 

AGB̂total = ∑ AGB̂i 4.05 0.60 AGB̂total = ∑ AGB̂i 1.49 0.95 

DBH = diameter at breast height (cm); TH = total tree height (m), AGB̂s =stem biomass estimate (kg), 

AGB̂b =branch biomass estimate (kg tree−1 ), AGB̂f =foliage biomass estimate (kg ), AGB̂total−tree = AGB̂s +
AGB̂b + AGB̂f (kg), RMSE = root mean square error of the estimate, and Adjusted R2 = proportion of variance 

explained by model corrected by the number of parameter estimates. 

 
Species-specific biomass equations 

 

The coefficients of the parameter and goodness of fit 

statistics of the species-specific equations to estimate 

total-tree biomass are showed in Table 5. We 

developed the species-specific equations using the 

structure of model II, because it showed the best 

goodness of fit statistics to estimate total-tree biomass 

and the parameter estimates for each specie converged 

iteratively using the independent fitting approach. 

Thus, the combined predicting variable 

(WDDBH2HT) captured most part of trees biomass. 

Additionally, the effect of coefficients (β̂1) that 

represent the influence of the three variables 

(WDDBH2HT) on the biomass were all significantly 

different from zero at α = 0.5. The R2 values showed 

that the explained observed biomass variance by fitted 

models were between 94% and 99%. Total-tree 

biomass estimation was less accurate in B. simaruba, 

and Cecropia peltata, judged by the RMSE and R2 

values. 

 

Table 5. Biomass equations and goodness of fit statistics for species-specific equations for trees ≤ 10 cm diameter of 

secondary tropical forests of southeast Yucatan peninsula. 

Scientific name N Equation RMSE R2 

Coccoloba diversifolia 13 AGB̂ = 0.05068(WDDBH2TH)0.99516 0.004 0.98 

Chrysophyllum mexicanum 15 AGB̂ = 0.06227(WDDBH2TH)0.94917 0.004 0.99 

Malmea depressa 13 AGB̂ = 0.11833(WDDBH2TH)0.87522 0.011 0.97 

Psidium sartorianum 13 AGB̂ = 0.10630(WDDBH2TH)0.91959 0.006 0.99 

Piscidia piscipula 15 AGB̂ = 0.07289(WDDBH2TH)0.94587 0.013 0.97 

Lonchocarpus rugosus 13 AGB̂ = 0.04584(WDDBH2TH)1.02960 0.004 0.99 

Pouteria campechiana 14 AGB̂ = 0.04838(WDDBH2TH)1.00241 0.007 0.98 

Luehea speciosa 12 AGB̂ = 0.05259(WDDBH2TH)0.98285 0.009 0.97 

Swartzia cubensis 14 AGB̂ = 0.07647(WDDBH2TH)0.95817 0.005 0.98 

Licaria campechiana 16 AGB̂ = 0.07333(WDDBH2TH)1.02468 0.008 0.98 

Simarouba glauca 14 AGB̂ = 0.08854(WDDBH2TH)0.95660 0.006 0.97 

Croton reflexifolius 15 AGB̂ = 0.09731(WDDBH2TH)0.91987 0.007 0.98 

Brosimum alicastrum 14 AGB̂ = 0.08155(WDDBH2TH)0.92658 0.030 0.94 

Zuelania guidonia 14 AGB̂ = 0.08589(WDDBH2TH)0.94098 0.009 0.98 

Guettarda combsii 17 AGB̂ = 0.05349(WDDBH2TH)1.02479 0.003 0.99 

Lysiloma latisiliquum 14 AGB̂ = 0.018884(WDDBH2TH)1.142107 0.005 0.97 

Lonchocarpus xuul 12 AGB̂ = 0.07166(𝑊𝐷DBH2TH)0.97387 0.029 0.96 

Vitex gaumeri 12 AGB̂ = 0.05771(WDDBH2TH)1.00887 0.007 0.98 

Dipholis salicifolia 18 AGB̂ = 0.07512(WDDBH2TH)0.94434 0.005 0.98 

Pouteria unilocularis 17 AGB̂ = 0.07714(WD DBH2TH)0.96663 0.011 0.98 

Bursera simaruba 13 AGB̂ = 0.1156427(WDDBH2TH)0.88694 0.079 0.95 

Cecropia peltata 12 AGB̂ = 0.060239(WDDBH2TH)1.02746 0.063 0.96 

AGB̂ = aboveground biomass estimate (kg), WD = wood density g cm−3, DBH = diameter at breast height cm, TH = 

total tree height (m), N = number of sampled trees, RMSE =root mean square error of the estimate, and Adjusted R2 = 

proportion of variance explained by model corrected by the number of parameter estimates. 



Tropical and Subtropical Agroecosystems 22 (2019): 735-754                                                                                               Puc-Kauil et al., 2019 

744 

Comparison observed versus estimated total-tree 

biomass 

 

There was a significant linear relationship between 

predicted biomass with species-specific equations and 

observed biomass in most individual species (Figure 

2). The correlation values (𝑟) were between 0.96 and 

0.99 for all species. Three species showed a slightly 

underestimated biomass owing to the slope value of 

linear regression (�̂�1) being slightly above to one: L. 

xuul (𝑦 = 1.0119), Simarouba glauca (𝑦 =

1.01448) and C. peltata (𝑦 = 1.1577) (Figure 2). 

Across all species, the slope value obtained with 

Hughes et al. (1999) equation was between 𝑦 =

1.206581 and 𝑦 = 2.53534 (Figure 2). With Chave et 

al. (2003) equation the coefficient was between 𝑦 =

1.17703 and 𝑦 = 1.99099 (Figure 2). The results 

indicate that these two equations underestimated 

observed biomass observed in the majority of tree 

species, in particular for species with high and 

intermediate WD. We obtained statistical differences 

(Kruskal − Wallis test; χ2 = 9.78, d. f = 2, p ≤

0.007) on the median of estimated biomass among 

equations of this study and those developed by Hughes 

et al. (1999) and Chave et al. (2003) . 

 
Figure 2. Observed total-tree biomass versus estimated total-tree biomass with species-specific equations fitted 

in this study, and Hughes et al. (1999) and Chave et al. (2003) equations. The orange solid line represents the 1:1 

ratio between the biomass values. The red, green and blue solid line represents the linear regression between 

observed and predicted biomass. 
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Comparison of biomass equations performance 

 

A comparison of the relative mean error (%) of the 

estimated biomass with the species-specific equations 

of this study, Hughes et al. (1999), and Chave et al. 

(2003) equations is showed in Table 6. Specific-

species equations developed in this study 

overestimated between 0.36% and 2.97% on average 

the total-tree biomass, which was registered mainly for 

Dipholis salicifolia and Lysiloma latisiliquum. While 

they underestimated total tree-biomass between 0.14% 

and 9.41% in Chrysophyllum mexicanum and C. 

peltata. Chave et al. (2003) equation underestimated 

biomass between 7.38% and 48.46% on average. 

These values were recorded for L. latisiliquum and 

Licaria campechiana, respectively. Besides, Chave et 

al. (2003) equation does not overestimate total tree 

biomass of any species. When using Hughes et al. 

(1999) equation, an overestimation total tree biomass 

was observed between 33.04% and 44.22% on 

average, which corresponded to B. simaruba and C. 

peltata. While it underestimated total biomass between 

12.10 and 59.82%, and it was observed in S. glauca, 

Pouteria unilocualris and Psidium sartorianum, 

respectively. In most of the species, there were 

significant statistical differences (Kruskal −

Wallis test;  χ2 = 85.7, d. f = 2, p ≤ 0.0001) in the 

relative mean error of estimated biomass among 

equations of this study and, Hughes et al. (1999) and 

Chave et al. (2003) equations.  

 

Table 6. Comparison of the relative mean error (%) of the estimated individual total-tree biomass between the species-

specific equations developed in this study and those developed by Hughes et al. (1999) and Chave et al. (2003). 

Species name Hughes et al. (1999) Chave et al. (2003) This study 

Brosimun alicastrum -42.51 -24.49 1.00 

Bursera simaruba 33.05 -28.62 1.72 

Coccoloba diversifolia -42.19 -20.86 1.86 

Chrysophyllum mexicanum -42.60 -18.23 -0.15 

Croton reflexifolius -50.77 -34.42 -1.05 

Cecropia peltata 44.22 -33.30 -9.42 

Dipholis salicifolia -40.37 -23.87 0.36 

Guettarda combsii -42.56 -32.00 -1.66 

Licaria campechiana -54.33 -48.46 -0.76 

Lysiloma latisiliquum -17.93 -7.38 2.98 

Lonchocarpus rugosus -54.95 -33.33 -2.09 

Luehea speciosa -33.63 -17.73 -0.46 

Lonchocarpus xuul -53.51 -34.64 -1.00 

Malmea depressa -43.32 -18.21 -2.72 

Pouteria campechiana -45.05 -19.70 -0.72 

Piscidia piscipula -35.98 -26.57 -0.19 

Psidium sartorianum -59.82 -44.25 -1.53 

Pouteria unilocularis -55.88 -36.34 1.38 

Swartzia cubensis -42.84 -33.38 -1.66 

Simarouba glauca -12.11 -31.71 0.44 

Vitex gaumeri -30.68 -33.32 -2.72 

Zuelania guidonia -44.43 -36.26 -0.87 
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DISCUSSION 

 

We developed species-specific equations for 

estimating biomass by structural components (i.e. 

stem, branch and foliage) and total-tree biomass for 

small-size trees in secondary tropical forests of the 

southeast Yucatán peninsula. When we modeled all 

biomass dataset, the model I and II (Table 2 and 3) 

presented the best goodness-fit-statistics. The addition 

of TH and WD in the models as predictors were key 

variables to improve the models fit. In much of the 

previous studies, only DBH has been widely used as a 

predictor variable to fit biomass equations, with which 

reliable biomass estimates have been obtained in 

tropical forests (Basuki et al., 2009; Douterlungne et 

al., 2013; Vargas-Larreta et al., 2017). Other studies 

use only DBH and WD (Svob et al., 2014; Chaturvedi 

et al., 2012; Nam et al., 2016), but not TH because of 

the difficulties that represent to precise measure it in 

the field (Segura and Kanninen, 2005; Djomo et al., 

2010; Hunter et al., 2013). However, our results are 

consistent con other studies that recognize the need to 

integrate both TH and WD in models, since they 

substantially reduce the error in model fitting, and 

increase the accuracy in biomass estimation 

(Feldpausch et al., 2012; Chave et al., 2014; Mugasha 

et al., 2016). 

 

Biomass equations by structural components 

 

Simultaneous fitting of biomass equations by tree 

structural components were satisfactory with the 

model I (Table 2), since the total-tree biomass was 

equal to the sum of the biomass of structural 

components. Our findings on the additivity of total 

biomass for individual tree species was consistent with 

previous studies across the world in temperate forests 

(Bi et al., 2004; Soriano-Luna et al., 2015; Sanquetta 

et al., 2015b; Vargas-Larreta et al., 2017; Zhang et al., 

2017). In tropical forests, it is not yet frequent studies 

that fit biomass equations with the simultaneous fitting 

approach. Besides, other studies have shown that the 

application of the SUR technique in simultaneous 

fitting is a successful methodology, because it takes 

into account the inherent correlations among biomass 

components to the total-tree biomass (Parresol, 2001; 

Bi et al., 2010; Dong et al., 2014). While, an 

independent fitting at component level the sum of 

components of biomass can generate inconsistent 

results in total tree biomass, since it does not guarantee 

the principle of additivity (Sanquetta et al., 2015b; 

Zhang et al., 2017).  

Performance of biomass equations 

 

In tropical forests there are few studies that have 

compared the equations performance developed for 

trees ≤ 10 cm DBH. We compare the performance of 

species-specific equations versus generalized 

equations by Hughes et al. (1999) and Chave et al. 

(2003). Across 22 tree species, species-specific 

equations developed in this study underestimated ~ 9.5 

% on mean total-tree biomass, and overestimated in ~ 

3%. Species such as B. simaruba showed the higher 

relative error (Table 6). We observed that the branches 

of B. simaruba were very widespread and of irregular 

size. Thus, we believe that this pattern of biomass 

allocation influenced the accuracy of the fit of branch 

equation of this species (Table 4). It was revealed that 

branch equations are less accurate since biomass is 

naturally more variable than the other components 

(Sanquetta et al., 2015b). For instance, many tropical 

species and broadleaf species in temperate forests, tend 

to extend their branches to reach the largest amount of 

photosynthetic light for tree growth and development 

(Sanquetta et al., 2015b; Ngomanda et al., 2014; 

Zhang et al., 2017). This implies that the architectural 

type of the plant can affect the variability of the branch 

biomass (Ngomanda et al., 2014). 

 

The performance Hughes et al. (1999) equation was 

inconsistent across the 22 species evaluated in this 

study. For instance, the error of biomass 

overestimation for species with low WD (B. simaruba 

and C. peltata) was ~ 33% up to 44%. While the error 

of biomass underestimation in species with high WD 

(mainly P. unilocularis and P. sartorianum) was ~ 

12% to 60%. Hughes et al. (1999) equation did not 

express with accuracy the biomass of species with 

wood densities different of the species harvested in 

stands used in this study. We also observed in our study 

that B. simaruba and C. peltata showed higher root 

mean square error (0.079 and 0.063) than the other 

species. Our results are consistent with studies reported 

in dry and wet tropical forests of India and Tanzania 

(Kebede and Soromessa, 2018; Mugasha et al., 2016), 

which indicated that WD can affect the models fit since 

it differs among tree genus and species, such as the 

species with low and high WD of this study. 

 

When we applied the equation developed by Chave et 

al. (2003) to our data, the biomass estimation at species 

level improved slightly compared to the Hughes et al. 

(1999) equation, possibly due to inclusion the WD in 

the equation structure. The performance of Chave et al. 
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(2003) equation was variable in the underestimation 

biomass of all the species (between 7% and 48.5%), 

regardless of the number of sampled trees per species. 

The higher error was recorded in species with high WD 

(0.61-0.80 g.cm-3). Svob et al. (2014) pointed out that 

when the error of the models differs between tree 

species, independently of the sample size, the equation 

should not be applied outside the area where they were 

generated. The high error levels in biomass estimations 

registered with Hughes et al. (1999) and Chave et al. 

(2003) equations, help us to confirm that the use of 

equations generated for regions different than the site 

where they are intended to be applied is a significant 

source of uncertainty in estimating local biomass-

carbon stocks (Sileshi, 2014). 
 

Sources of error in biomass equations 

 

The larger bias in biomass estimates with Hughes et al. 

(1999) equation, might be associated to the use of DBH 

as the only predictor variable, the sample size that was 

used (66 trees), and the absence of TH and WD as 

parameters that are linked to forest structural and 

growth of the species (Svob et al., 2014).. Particularly, 

most biomass equations based only on DBH as 

biomass predictor, could represent a significant bias 

for total-tree biomass estimates (Chaturvedi et al., 

2012), since only DBH is insufficient to explain the 

whole variation of total-tree biomass (Navar, 2009c; 

Feldpausch et al., 2012). Therefore, if both TH, WD, 

and crown diameter are considered in model as 

predictor variables, there may be a stronger 

relationships total-tree biomass (Navar, 2009c; 

Ngomanda et al., 2014; Duncanson et al., 2015). For 

instance, in Kenia and México in tropical forests the 

species-specific equations that relate biomass to DBH 

only may reached biases between 4.6% to 18% (Kuyah 

et al., 2012; Douterlungne et al., 2013). While generic 

models, the biomass could be overestimated up to 52% 

in global scale forests (Djomo et al., 2010; Chaturvedi 

et al., 2012; Chave et al., 2014). In some tree species 

of forests of Mexico, India, China, and Thailand, the 

RMSE of models fit with only DBH vary between 0.55 

up to 0.65 (Chaturvedi et al., 2012; Douterlungne et 

al., 2013; Cai et al., 2013; Ounban et al., 2016). This 

range values were higher compared with RMSE of 

0.004 to 0.111 found in this study. We confirmed that 

TH and WD in our model I improved the RMSE 

compared to other models tested. The combined 

variable (WDDBHTH) in model I, also has been 

applied in tropical forests of Africa, Asia, Panamá, and 

Brazil (van Breugel et al., 2011; Goussanou et al., 

2016; Nam et al., 2016; Lima et al., 2012). Estimates 

of total-tree biomass at local scale have been reliable. 

This type of models more accurately estimates local 

biomass since they are parameterized with local data 

of TH and WD, which are strongly correlated with the 

total-tree biomass. For instance, in African and Asian 

forests, local equations underestimated 10% and 

overestimated total biomass up to 23.9%. But, if 

applied pan-tropical equations that include combined 

variable for estimating biomass at local scale, the bias 

in biomass estimation can be up to 62% (van Breugel 

et al., 2011; Bastin et al., 2015; Goussanou et al., 

2016). With our models, we obtained ~ 3% on mean 

error of the biomass underestimation and ~ 9.5 biomass 

overestimation. 

 

Regarding the influence of sample size on biomass 

models, van Breugel et al. (2011) compared the 

performance of models with different sample sizes. 

The authors fitted two generic local models using 244 

trees of 26 species in Panamá secondary forests; using 

for one model only the DBH as independent variable, 

and DBH and WD for the second model, respectively. 

When these authors used 80% (195 trees) and 20% (49 

trees) of the total sampled trees, the relative mean error 

of models increased from 4% to 21%. They concluded 

that to develop an equation that include only DBH, it 

is necessary a larger sampling size than a model that 

includes DBH and WD, since the model parameters are 

systematically sensitive to small sample size. In that 

sense, the performance of the generic equation of 

Hughes et al. (1999) might be affected by sample size 

and the lack of TH and WD as predictor variables , 

which varies among forests at regional scale (Svob et 

al., 2014; Ketterings et al., 2001; Chave et al., 2006). 

Likewise, in dry and wet tropical forest of Costa Rica, 

Svob et al. (2014) observed than the performance of 

biomass models depends of the sample size, since the 

uncertainty of the biomass estimation increase when 

number of sampled trees decreased. 

 

Chave et al. (2003) included in their equation a 

constant value of 0.54 g.cm-3, that corresponds to the 

mean WD obtained from 123 species in tropical forest 

of Panamá. However, it appears that the wood densities 

by species were not obtained entirely in the region 

where the equation was developed. In contrast, wood 

densities that we used in our study were based on tree 

samples that we took in the field. The equations 

developed in this study showed better performance in 

biomass estimation that those developed by Hughes et 

al. (1999) and Chave et al. (2003).Similar results have 

been found elsewhere when a generic equation 

developed from a different region is applied at local 

level. For instance, Ketterings et al. (2001) generated 

equations for specific sites with trees of 5 to 50 cm in 

DBH (29 trees total) in secondary forests of Sumatra; 
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further, they contrasted the performance of their 

equations with those generated at global scale from 

data collected in a wide range of tropical climatic 

conditions and tropical vegetation types by Brown 

(1997). The Ketterings et al. (2001) equations , which 

included WD in addition to DBH, reduced the 

estimation error of total biomass by 36-51%, but the 

estimates were significantly higher than those 

observed when they applied Brown (1997) equation. In 

other studies, such as the one carried out in Brazilian 

forests, 10.6% and 14.8% mean estimation error were 

observed with the pan-tropical equations of Brown 

(1997) and Chave et al. (2005), whereas the local 

models showed 5.63% mean estimation error (Lima et 

al., 2012). In southeast Asian forests, 19.8% on mean 

error was obtained locally, but when regional and 

global scale equations were used the mean error was 

from 31.2% to 38.4% (Nam et al., 2016). 

 

The higher relative estimation error showed by 

biomass equations may be due to several factors: 1) 

when the equations are fitted with a relatively small 

sample size, the coefficients are not adequate for other 

sites where may be higher tree densities and species 

richness, which may not be similar to the range of tree-

diameters used in the equation fit process (Ketterings 

et al., 2001; van Breugel et al., 2011; Svob et al., 

2014); 2) the use of only DBH as predictor variable 

may not be sufficient to explain the relationship with 

total tree biomass, because it does not express all the 

functional and ecological plant features(Feldpausch et 

al., 2012; Goussanou et al., 2016); 3) the absence of 

the effect of TH and WD in the equations, can decrease 

the prediction capability of the developed equations 

(Feldpausch et al., 2012; Mugasha et al., 2016; 

Valbuena et al., 2016). It is widely known, the TH and 

WD vary among tropical regions due to species 

composition and site characteristics (i.e. soil type, 

forest age, and precipitation), in which both variables 

can modify the equations coefficients (Chave et al., 

2014; Valbuena et al., 2016) and may not be 

appropriate for sites outside where the equations were 

developed (Ketterings et al., 2001; Baker et al., 2004; 

Cai et al., 2013; Mugasha et al., 2016). Therefore, 

considering TH and WD as explanatory variables in 

biomass equations is important to account the biomass 

variation triggered by environment factors 

(Feldpausch et al., 2012; Mugasha et al., 2016). In this 

study we did not use mixed-effects models to analyze 

the effect of species and sites (covariates). However, 

we reiterate that the fitted equations implicitly take into 

account in their structure, through WDDBH2HT , 

information that accounts the variability effect of local 

species and site environmental conditions. 

Consequently, we consider that the equations are 

efficient and statistically reliable for biomass estimate 

of small trees in study region. On the other hand, these 

equations are parsimonious and are applicable for 

inventory data in other similar forest types owing the 

inclusion of WD and HT in their structure, and can lead 

to an improvement in biomass estimation in tropical 

secondary forests with high species richness. 

 

CONCLUSIONS 

 

We generated species-specific biomass equations for 

small-size trees of 22 species of secondary tropical 

forests of the Yucatán peninsula. The biomass 

equations were fitted by structural components such as 

stem, branch and foliage, and total-tree biomass. . Our 

results supported the hypothesis that using TH and 

WD, besides DBH, as predictor variables in the 

equations can appreciably reduce the error in the 

goodness of fit statistics, and better explain total-tree 

biomass variation. The predicting ability of the 

species-specific equations here developed was higher 

in the estimation of total-tree biomass at species level 

than generic equations developed for other tropical 

regions. Therefore, we confirmed the hypothesis that 

local species-specific equations are statistically more 

precise for biomass estimations at individual-tree 

level, since they account for the allometry variability 

of tree species of the site. The individual equations are 

adequate to improve biomass stocks estimations, 

while, generic equations may deliver higher 

uncertainties which needs to be considered when they 

are applied at local scale. Our equations could be used 

to reduce the uncertainty on biomass-carbon stocks 

estimations of tropical secondary forests that contain 

high densities of small-size tree species, such as those 

commonly present across the Yucatán peninsula. They 

may be useful for carbon estimation within climate 

change contexts to evaluate the role of tropical forests 

in carbon removals and emissions. 
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