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SUMMARY 

Background. Mapping selective logging impacts on the Yucatan Peninsula is important to pursuing carbon 

emissions reduction and biodiversity conservation goals. Objective. To evaluate the effectiveness of applying 

remote sensing techniques using LANDSAT 8 OLI imagery to detect tropical forest disturbance from timber 

harvesting in four communally managed forests (ejidos). We further assess differences among them in terms 

of implementing improved forest management (IFM) and reduced impact logging (RIL). Methodology. 

Vegetation indices were calculated, and forest cover classification was performed to map logged and 

unlogged forest and specific harvest disturbances (e.g. felling gaps, skid trails, logging roads and log 

landings) in annual cutting areas of 2014. Accuracy assessments were conducted based on validation points 

collected in the field after logging. Results. We found that 75% of the binary classifications (logged and 

unlogged forest) had mean overall accuracies greater than 60%, representing a fair (40 to 70%) accuracy, 

although mapping of specific harvesting disturbances had poor accuracy (<40%). Vegetation indices that 

performed the best were normalized vegetation index (NDVI), Tasseled Cap Greenness and Tasseled Cap 

Wetness. Ejidos that applied IFM and RIL impacted a smaller percentage of their cutting areas and less area 

of forest per cubic meter of timber extracted, despite similar or higher logging intensities than ejidos without 

improved practices. Implication. Monitoring selective logging disturbance is important to improved forest 

management and certification of sustainability.  Conclusion. Mapping and monitoring impacts from selective 

logging by forest managers and technicians can be performed in a cost-efficient manner using LANDSAT 8 

images, although accuracy could be improved with higher resolution imagery.  

Key words: Selective logging, LANDSAT 8 OLI, harvest impacts, Yucatan Peninsula, reduced impact 

logging. 

 

RESUMEN 

Antecedentes. El mapeo de los impactos de la tala selectiva en la Península de Yucatán es importante para 

lograr la reducción de las emisiones de carbono y los objetivos de conservación de la biodiversidad. Objetivo. 

 
† Submitted August 8, 2019 – Accepted October 16, 2019. This work is licensed under a CC-BY 4.0 International License.  

ISSN: 1870-0462. 

http://creativecommons.org/licenses/by/4.0/


Tropical and Subtropical Agroecosystems 23 (2020): #10                                                                                Hernández-Gómez et al., 2020 

2 

Evaluar la efectividad de la aplicación de técnicas de teledetección mediante el uso de imágenes LANDSAT 8 

OLI para detectar la perturbación del bosque tropical a partir de la extracción de madera en cuatro bosques 

con manejo comunitario (ejidos). Además, evaluamos las diferencias entre ellos en términos de 

implementación de manejo forestal mejorado (IFM) y prácticas de aprovechamiento de impacto reducido 

(RIL). Metodología. Se calcularon los índices de vegetación y se realizó la clasificación de la cubierta 

forestal para hacer un mapa de las zonas taladas y no taladas y las perturbaciones específicas del 

aprovechamiento (por ejemplo, claros por la tala de árboles, carriles de arrastre, caminos forestales y áreas de 

acopio de madera) en las áreas de corta anual de 2014. Las evaluaciones de precisión se realizaron en función 

de los puntos de validación colectados en el campo después del aprovechamiento. Resultados.  Encontramos 

que el 75% de las clasificaciones binarias (áreas impactadas y no impactadas) tenían precisiones globales 

medias superiores al 60%, lo que representa una precisión aceptable (40 a 70%), aunque el mapeo de las 

perturbaciones específicas de la cosecha tuvo poca precisión (<40%). Los índices de vegetación que 

obtuvieron los mejores resultados fueron el índice de vegetación de diferencia normalizada (NDVI), Tasseled 

Cap Greenness y Tasseled Cap Wetness. Los ejidos que aplicaron IFM y RIL impactaron un porcentaje menor 

de sus áreas de corta y menos área de bosque por metro cúbico de madera extraída, a pesar de intensidades de 

tala similares o mayores que los ejidos sin prácticas mejoradas. Implicaciones. El monitoreo del impacto por 

la tala selectiva es importante para mejorar el manejo forestal y la certificación de sostenibilidad. 

Conclusiones. El mapeo y el monitoreo de los impactos de la tala selectiva por gestores y técnicos forestales 

se puede realizar de manera costo-efectiva utilizando imágenes LANDSAT 8, aunque la precisión se puede 

mejorar con imágenes de alta resolución.  

Palabras clave: Tala selectiva, LANDSAT 8 OLI, impactos de la cosecha, Península de Yucatán, tala de 

impacto reducido. 

 

 

INTRODUCTION 

 

On the Yucatan Peninsula, forestry is conducted 

by selective logging which involves the harvesting 

of commercially valuable timber present at very 

low densities in the forest (1-20 trees·ha-1) 

(Petrokofsky et al., 2015). Cutting cycles of 

selective silvicultural systems are around 25 years, 

presumably allowing forest disturbance from 

logging to recover by natural regeneration and 

enrichment planting (Navarro-Martínez et al., 

2017; Ellis et al., 2015). However, disturbance 

from selective logging can lead to forest 

degradation when there is a reduction in the 

capacity of the ecosystem to supply goods and 

services (FAO, 2010). Added to deforestation, 

degradation makes up a significant source (20%) 

of carbon emissions from tropical forests which 

can eventually result in deforestation (Griscom et 

al., 2009). In the tropics, poor forest management 

and logging practices (Pearson et al., 2017), in 

addition to illegal logging (Vaglio et al., 2016), 

are major causes of forest degradation. However, 

sustainable forestry, through improved forest 

management (IFM) and reduced impact logging 

(RIL), has been identified as a viable method to 

conserve forest carbon stocks and reduce 

emissions (Putz et al., 2008). 

  

For decades, communally managed landholdings 

with forests (ejidos) on the Yucatan Peninsula 

have played a significant role in producing timber, 

supporting rural livelihoods and conserving 

natural resources. Several studies have shown how 

community forest management in the region has 

aided in reducing deforestation and maintaining 

forest cover (Ellis and Porter, 2008; Bray et al. 

2004), while improving the economic well-being 

of ejidos through timber revenues (Antinori and 

Bray, 2005). Thus, both national and international 

efforts have been underway to strengthen and 

promote community forest management as a 

“climate smart” land use that also helps conserve 

biodiversity (CONAFOR, 2015; UN-REDD 

Programme, 2015). Specifically, RIL, which 

includes a wide range of improved forestry 

practices including directional felling, alternative 

log extraction (skidding) methods, and skid trail 

and road planning (Read, 2003), has already 

shown potential to reduce forest disturbance and 

carbon emissions from selective logging activities 

(Ellis et al. 2019). 

 

Currently, REDD+ (Reduction of Emissions from 

Deforestation and Degradation) strategies on the 

Yucatan Peninsula are focusing on reducing 

carbon emissions and biodiversity impacts from 

forestry operations through IFM and RIL, and at 

the same time, increasing timber production, 

strengthening community forest enterprises, 

improving timber markets, and promoting 

sustainable forestry certification (e.g. Forest 
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Stewardship Council, FSC) (Herold and Skutsch, 

2011). As a result, there is a recent and growing 

need to develop time and cost-efficient methods to 

map and monitor forest disturbance (and recovery) 

caused by selective logging and assess impact 

reductions from applying IFM and RIL practices 

(Asner et al., 2005).  

 

Remote sensing is a potential tool for forest 

managers and technicians to rapidly and cheaply 

assess and map disturbance from selective logging 

in tropical forests (Asner et al. 2002). 

Nevertheless, forest disturbance from this activity 

occurs at a finer scale than other types of 

anthropogenic or natural disturbances, making it a 

challenging task for the spatial resolution of 

commonly available satellite imagery, such as 

LANDSAT. Also, cloud free images in tropical 

regions are often limited. As would be expected, 

some studies show that remote sensing techniques 

using high resolution imagery, such as IKONOS 

(Read, 2003) and LIDAR (Asner et al., 2010), 

enhance the detection of disturbed forest by 

selective logging compared to using LANDSAT 

only.  However, less accessibility and much 

higher cost of high-resolution imagery and 

LIDAR data limit its use by forest technicians and 

managers. Moreover, on the Yucatan Peninsula, 

remote sensing techniques have not been 

evaluated and much less implemented in forest 

management. 

 

Even though suboptimal results have been 

obtained using LANDSAT to detect forest 

disturbance from logging (Read, 2003), other 

studies have demonstrated its potential in 

temperate (Hais et al., 2009) and tropical forest 

(Monteiro et al., 2003). The earliest uses of 

LANDSAT to map selective logging impacts in 

tropical forest relied on visual interpretation, 

which proved problematic especially when harvest 

intensities were low (Souza and Barreto, 2000). 

Image processing such as maximum likelihood 

classifiers and spectral mixture analysis (SMA) of 

pixels (end member fractions) were later used to 

detect and map selectively logged areas in tropical 

forest using LANDSAT and ASTER imagery 

(Broadbent et al., 2006). Use of different 

vegetation indices such as NDVI, NDMI, Tasseled 

Cap (wetness, brightness and greenness) and other 

derived disturbance indices (DI) have also been 

applied to detect forest disturbance from logging 

(Hais et al., 2009). Currently, LANDSAT has 

been used to map degradation by logging and 

other activities in Brazil, Perú and Madagascar 

using the CLASlite (Carnegie Landsat Analysis 

System) automated system based on SMA of 

photosynthetic and non-photosynthetic vegetation 

within image pixels (Bryan et al., 2013). 

However, for our study area on the Yucatan 

Peninsula the CLASlite automated system did not 

show promising outcomes in detecting forest 

disturbance from selective logging (Hernández 

Gómez et al., 2019). 

 

Integration of remote sensing methods to monitor 

and quantify forest impacts from selective logging 

operations are beneficial to efforts in obtaining 

management authorization, financial support and 

certification of sustainability (e.g. Forest 

Stewardship Council, FSC). The objective of this 

research was to evaluate the effectiveness of using 

LANDSAT 8 OLI derived vegetation indices (e.g. 

NDVI and Tasseled Cap) to detect and map forest 

disturbance from selective logging in four ejido 

harvest areas on the Yucatan Peninsula. We 

evaluated LANDSAT since they are a free and 

openly available image archive with potential for 

identifying forest disturbance and degradation 

from a variety of human and natural impacts 

including logging (Jarron et al., 2017). 

Furthermore, we apply techniques that are user-

friendly and commonly available in most remote 

sensing and GIS software, some of them open 

access (e.g. GRASS, ILWIS, QGIS), facilitating 

its application by local forest managers and 

technicians. We compared and discuss forest 

disturbance from selective logging in relation to 

differences in the implementation of RIL practices 

and other forest management characteristics 

among the study ejidos. Finally, we offer 

conclusions and recommendations on using 

LANDSAT 8 OLI imagery for monitoring 

disturbance and degradation impacts from 

selective logging, which up to date has not been 

evaluated on the Yucatan Peninsula.  

 

MATERIALS AND METHODS 

Study Sites. Forest disturbance from selective 

logging was analyzed in four ejidos in the Selva 

Maya region of Quintana Roo, Mexico (Figure 1). 

Climate is warm and subhumid, with mean annual 

precipitation of 1200 mm and a marked dry season 

(< 60 mm of rainfall per month) from November 

to April. Altitude varies from 10 to 70 m.a.s.l., 

with maximum elevations at the southern and 

western portion of the study area reaching 300 
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m.a.s.l. (Ellis and Porter-Bolland, 2008). The 

predominant vegetation is sub-evergreen tropical 

forest, characterized by a tree canopy height 

between 15 and 25 m, of which 25% lose their 

leaves during the dry season. Common tropical 

forest trees are big leaf mahogany (Swietenia 

macrophylla), sapodilla or chicle (Manilkara 

zapota) and Maya nut or ramón (Brosimum 

alicastrum) (Ellis et al., 2017). Forest types are 

related to soils and topography; upland forests are 

located on high ground over well-drained 

rendzinas, and lowland forests in flooded 

depressions with gleysols and vertisols (Toledo-

Aceves et al., 2009). 

The four community forestry ejidos analyzed in 

this study are Noh Bec, Nueva Guadalajara, Felipe 

Carrillo Puerto and Santa Maria Poniente (Figure. 

1). These ejidos make regular use of their forest 

areas for commercial timber harvesting and have 

authorized forest management plans that apply a 

polycyclic selective sylvicultural system with 25-

year cutting cycles (Bray et al., 2004). Forestry 

ejidos typically have a permanent management 

area that ranges from 800 ha to 40,000 ha, divided 

into annual cutting areas (ACA) that range from 

200 ha to 2800 ha. Large ACAs are sub-divided 

into smaller management units that are typically 

100 ha. Within the ACA, trees to be felled are 

marked, cut and extracted using a skidder 

(articulated forestry tractor) that drags the timber 

to small log landings that vary in size from 400 to 

1200 m2 (Arevalo et al., 2016), locally known as 

“bacadillas”. Subsequently, the logs are collected 

from the log landings which are accessed by 

logging roads, and then transported to nearby 

sawmills for processing and commercialization. 

Timber harvesting operations in these ejidos are 

typically conducted from January to May before 

the rainy season. 

 

 

Figure. 1. Location of study area and forestry ejidos on the Yucatan Peninsula. 
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Table 1. Description of the four-community forestry ejidos sampled for mapping selective logging forest 

disturbance on the Yucatan Peninsula. 

 

 

Ejido 

 

 

Ejido 

area ha 

 

 

Forest 

area ha 

 

 

Size 

ACA 

ha  

(MU) 

 

 

Implementation of IFM and 

RIL 

Harvest Volume 

from ACA 

(Logging Intensity)   

Felipe Carrillo 

Puerto 

47, 223  24,780 1,843 

(50) 

 

Without IFM and RIL 

 

 1,621 m3·yr-1 

(1 m3·ha-1) 

  
Noh Bec 24,122 18,000 1,008 

(25) 

FSC certified with IFM and 

RIL implementation (e.g. 

harvest planning and 

directional felling)  

 

 7,000 m3·yr-1 

(7 m3·ha-1)  

Santa María 

Poniente 

8,544  5,000 200   

Without IFM and RIL 

 

700 m3·y-1 

3 m3·ha-1 

  
Nuevo 

Guadalajara 

28,279  12,234 240  Implements RIL (e.g. 

modified agricultural tractor 

for skidding) 

 

500 m3·y-1 

3 m3·ha-1  
 

 

The four ejidos sampled in this study vary in their 

forest management characteristics and practices 

(Table 1). Noh Bec, for example, is certified by 

the Forest Stewardship Council (FSC) and 

implements IFM and RIL practices. IFM refers to 

multiple objective forestry that aims to achieve 

sustainable production, in addition to biodiversity 

conservation and providing environmental 

services (Griscom and Cortez, 2013), while RIL 

specifically implies practices that reduce forest 

impacts during planning and harvesting operations 

(Ellis et al., 2019; Asner et al., 2010; Griscom et 

al., 2009; Putz et al., 2008) such as skid trail 

planning, to improve harvest efficiency, and 

directional felling, to reduce harvest impacts. 

Moreover, they are an ejido with a large ACA 

(1008 ha) that harvests a larger annual volume of 

timber in comparison to the other ejidos, having 

the highest harvest intensity in their ACA (7 

m3·ha-1). Nueva Guadalajara is an ejido that also 

implements RIL practices such as the use of a 

modified agricultural tractor to extract logs, 

instead of a forestry skidder which are larger, 

wider and heavier, causing more damage to forest 

vegetation. However, forestry operations in Nueva 

Guadalajara are of a smaller scale, having a small 

ACA (240 ha) and lower harvest intensity (3 

m3·ha-1) compared to Noh Bec.  

 

Calculation of Vegetation Indices. We apply 

basic remote sensing techniques to map forest 

disturbance from selective logging in the 2014 

ACAs. Vegetation indices are calculated for each 

ACA using post-harvest LANDSAT 8 OLI 

images from December 2014. The month of 

December was optimal to evaluate disturbance 

from selective logging being at the end of the year 

after all logging has been completed and right 

before the next logging season begins. The 

LANDSAT 8 OLI images used in the study were 

path-row 19-47 for Felipe Carrillo Puerto, Noh 

Bec, Santa María Poniente and path-row 19-48 for 

Nueva Guadalajara. All images were obtained 

from Global Viewer of the US Geological Survey 

(USGS) in Level 1 format which are 

topographically calibrated and geometrically 

corrected (https://landsat.usgs.gov/landsat-

processing-details). 

  

Prior to calculating the vegetation indices and for 

purposes of radiometric and atmospheric 

correction, DN (digital number) values for each 

image were converted to radiance values and these 

subsequently converted to surface reflectance 

using raster calculator tool of ArcGis 10.3 and 

following the methodology and step by step guide 

https://landsat.usgs.gov/landsat-processing-details
https://landsat.usgs.gov/landsat-processing-details
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provided by Grind GIS: 

http://grindgis.com/blog/vegetation-indices-

arcgis#1. Subsets of each ejido territory were then 

made from the LANDSAT scenes and the 

following five vegetation-disturbance indices were 

calculated using raster calculator tool of ArcGis 

10.3: Normalized Difference Vegetation Index 

(NDVI), Tasseled Cap (which includes three sub-

indices of brightness [TCB], greenness [TCG], 

wetness [TCW]), and a normalized disturbance 

index (DI) derived from Tasseled Cap sub-indices. 

These vegetation indices have been used to 

identify forest disturbances in temperate 

environments (Neigh et al., 2014). For 

LANDSAT 8 OLI images, NDVI combines the 

red (R, band 4) and near-infrared (NIR, band 5) 

bands. NDVI is calculated as NDVI = NIR – 

R/NIR + R. 

 

Tasselled Cap transformation optimizes vegetation 

analysis by using all non-thermal LANDSAT 8 

OLI bands to produce TCB, TCG and TCW sub-

indices named according to the features in the data 

that they emphasize. To estimate the values of 

TCB, TCG and TCW we used LANDSAT 8 OLI 

coefficients proposed by Baig et al. (2014), and 

calculated as (Kauth and Thomas, 1976; Crist, 

1985): TCB = Σbi*OLIi, TCG = Σvi*OLIi, TCW 

= Σhi*OLIi. Where bi, vi and hi are the 

coefficients of the Tasseled Cap transformation 

for the calculation of the three values, and OLIi 

are the surface reflectance values for each non-

thermal band (i) of the LANDSAT 8 image. DI 

(Disturbance Index) is obtained from the Tasselled 

Cap TCW and TCB sub-indices values and 

calculated as (Hais et al., 2009): DI = TCW – 

TCB. We selected easily calculated vegetation 

indices that are accessible in most GIS and remote 

sensing software to facilitate its application by 

forest technicians on the Yucatan Peninsula (e.g., 

GRASS and QGIS, Ramdani et al., 2015; 

Zanchetta and Bitelli, 2017). 

 

Field Sampling and Validation Data. Field 

sampling was conducted to obtain ground-based 

georeferenced data to validate and map forest 

disturbance in each 2014 ACA. Sampling was 

realized from May to September 2014 after 

logging activities were concluded in the ACAs. 

Within the large ACAs (Noh Bec and Felipe 

Carrillo Puerto) sampled areas consisted of two 

randomly selected 100 ha blocks (200 ha total), 

while in the small ACAs (Nuevo Guadalajara and 

Santa Maria Poniente) one 100 ha block was 

sampled. Within each 100-ha block, forest 

disturbance data was collected by georeferencing 

and mapping all felled tree stumps (felling gaps), 

skid trails, access roads (old and new) and log 

landings. It should be noted that the stumps of 

felled trees are found at distances generally no 

more than 20 m from skid trails. In addition, 

control points of undisturbed forest were also 

collected in randomly located unlogged areas 

within each ACA, located from 50 to 100 m away 

from the nearest skid trail or felling gap. 

Randomly selected points were obtained for each 

forest disturbance category in each sampled 100-

ha block: 1) 100 for felling gaps or stumps; 2) 20 

for skid trails at least 200 m apart; 3) 20 for 

logging roads, also 200 m apart; 4) 2 to 6 for log 

landings, depending on the ejido ACA; and 5) 20 

control points in unlogged forest 50 to 100 m 

away from the nearest skid trail or felling gap.  

 

Classification of Forest Disturbance from 

Selective Logging. To facilitate the use of remote 

sensing techniques by community forest 

enterprises and local forestry technicians we 

employ the automated un-supervised Iso Cluster 

or ISODATA classification using ArcMap 10.3. 

However, open-access remote sensing software 

mentioned above can also perform unsupervised 

or ISODATA classification of images. Binary 

maps were produced by classifying the images of 

the five calculated vegetation indices (NDVI, 

TCG, TCW, TCB and DI) as logged vs. unlogged 

areas (2 classes) for each 2014 ACA. Surface area 

and proportion of disturbed forest from selective 

logging was subsequently calculated (excluding 

masked pixels with cloud cover within two 

ACAs). In addition, ISODATA classifications of 

the five calculated indices were performed to 

derive maps of the five specific forest disturbance 

categories: 1) felling gap, 2) skid trail, 3) access 

road 4) log landing and 5) unlogged forest. Binary 

and specific disturbance classifications were then 

assessed based on field validation points. 

 

Accuracy Assessment. We apply accuracy 

assessments to evaluate the effectiveness of 

vegetation indices calculated from LANDSAT 8 

OLI images in detecting and mapping forest 

disturbance from selective logging. Accuracy 

assessments were performed for the binary forest 

disturbance classifications (logged and unlogged 

areas) and the specific logging disturbance type 

classifications (felling gaps, skid trails, access 

roads, log landings and unlogged). Validation 

http://grindgis.com/blog/vegetation-indices-arcgis#1
http://grindgis.com/blog/vegetation-indices-arcgis#1
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points obtained from field sampling were 

employed for the accuracy assessments applying 

the method proposed by Olofsson et al. (2013) 

with the AccurAssess plugin for QGIS 3.4 (Mas et 

al 2014). This method produces and error-adjusted 

estimator and constructs confidence intervals for 

estimating classified areas, providing adjusted 

proportions of disturbed forest from selective 

logging based on the reference validation points. 

 

RESULTS 

 

Accuracy Assessments of Logged vs. Un-logged 

Areas. Figure 2 shows binary disturbance maps 

produced from each vegetation index (NDVI, 

TCW, TCB, TCG and DI) and for each ACA, 

categorized as logged and unlogged forest. The 

areas classified as logged show the combined 

impact of felling gaps, skid trails, logging roads 

and logging yards in each ACA. Accuracy 

assessment of the results indicated that detection 

of forest disturbance from selective logging using 

LANDSAT 8 OLI was possible, but not highly 

accurate (Table 2). Mean overall accuracies of 

selective logging disturbance classified from the 

calculated vegetation indices varied from 42% (DI 

in the ejido Santa Maria Poniente) to 72% (TCW 

in Nueva Guadalajara). Furthermore, 75% of the 

binary classifications (logged and unlogged forest) 

had mean overall accuracies greater than 60%, 

representing and overall good (40 to 70%), but not 

excellent accuracy (>70%), based on remote 

sensing standards used for accuracy assessments 

(Ismail and Jusoff, 2008). 

 

Producer accuracies (omission errors) show how 

well a certain area can be classified, while user 

accuracies (commission errors) indicate how 

reliable the map can identify the class on the 

ground (Table 2). The best producer accuracies for 

classifying logged areas were found with indices 

TCG and TCW in Noh Bec and TCB and TCW in 

Santa María Poniente. The highest user accuracies 

for mapped logged areas were found with 

vegetation indices TCB and NDVI in Nueva 

Guadalajara and DI and NDVI in Felipe Carrillo 

Puerto.  In general, producer accuracies for 

classifying unlogged areas were lower than those 

for logged areas, except for Nueva Guadalajara 

with very high producer accuracies for all 

vegetation indices. User accuracies to map 

unlogged areas were highest in Noh Bec and Santa 

Maria Poniente, with TCG and TCW indices 

respectively. 

 

Forestry ejidos implementing RIL practices and 

with greater logging intensity (Noh Bec and 

Nueva Guadalajara) had higher overall accuracies. 

NDVI and TCG proved to be the best indices with 

respect to overall accuracy results, and these two 

same indices, followed by TCW, also seemed to 

predominate as the best indices according to 

producer and user accuracy results. NDVI, TCB, 

TCG and TCW vegetation indices showed 

potential in mapping and monitoring forest 

disturbance from selective logging on the Yucatan 

Peninsula. Felipe Carrillo Puerto, with the largest 

ACA and lowest harvest intensity had the greatest 

disturbance from selective logging in their ACA 

(Table 3). Furthermore, despite its low intensity 

logging, Felipe Carrillo Puerto had the greatest 

degree of disturbance per m3 of timber harvested. 

Santa Maria Poniente, with the smallest ACA and 

moderate logging intensity, also showed high 

proportions of disturbance from logging, although 

calculated error adjusted proportions were lower 

compared to Felipe Carrillo Puerto. Likewise, the 

degree of disturbance per m3 of timber extracted 

was much lower in Santa Maria Poniente, despite 

having a higher logging intensity than Felipe 

Carrillo Puerto. 

 

In contrast, Noh Bec, with a large ACA and the 

highest logging intensity, had lower proportions of 

its ACA disturbed by logging, and the lowest 

calculated error adjusted proportions. In addition, 

Noh Bec, the FSC certified ejido implementing 

RIL practices, showed the lowest degree of 

disturbance per m3 of timber extracted from its 

ACA. Nuevo Guadalajara, with a small ACA and 

moderate harvest intensity, had the lowest surface 

area and proportion of ACA impacted by selective 

logging. Nuevo Guadalajara, implementing IFM 

and RIL practices, such as the use of a modified 

agricultural tractor for skidding, also demonstrated 

a low scale of disturbance per m3 of timber 

extracted. 

 

Accuracy Assessments of Selective Logging 

Forest Disturbance Types. While access roads 

and log landings may be easily identified in the 

images with the naked eye, felling gaps and skid 

trails are harder to distinguish from each other 

(Figure 3). Accuracy assessments of specific 

forest disturbance types (Table 4) were obviously 

not as high as the binary logged vs. unlogged 

classifications, indicating the difficulty in 

separating specific logging activities. Disturbance 
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from skidding and felling was the most difficult to 

differentiate. TCG showed the highest user 

accuracies for detecting log landings and felling 

gaps, as well as producer accuracies for log 

landing, access roads and unlogged forest classes. 

In contrast, producer accuracies for felling gaps 

and skid trails were much lower. Accuracy was 

mostly affected by classification errors between 

felling gaps and skid trails, which as noted above, 

are for the most part no more than 20 m apart, 

making differentiation between these disturbance 

types very difficult with LANDSAT 8 OLI images 

(30 m pixel).  

 

DISCUSSION 

 

This study showed accurate mapping of forest 

disturbance from selective logging using 

LANDSAT 8 derived vegetation indices. 

Nevertheless, there were limitations in 

discriminating the source of disturbance, such as 

felling, skidding and transporting timber. The 

overall accuracies of around 70% obtained for 

logged vs. unlogged forest maps were similar to 

those obtained for LANDSAT land use-land cover 

classifications in the region (Díaz-Gallegos et al., 

2001; Ellis and Porter-Bolland, 2008), 

demonstrating LANDSAT´s potential for mapping 

selective logging disturbance on the Yucatan 

Peninsula. Better overall accuracies in disturbance 

mapping were found in Nuevo Guadalajara and 

Noh Bec, both ejidos with higher timber harvest 

intensities. On the other hand, lower overall 

accuracies were obtained for the ejidos Santa 

María Poniente and Felipe Carrillo Puerto with 

much lower timber harvest intensities. While 

higher logging intensity apparently improves 

accuracy of mapping selectively logged areas, 

greater forest degradation from past forest use and 

natural impacts are suspected to cause lower 

accuracies in mapping unlogged areas. Felipe 

Carrillo Puerto, which in general show the lowest 

accuracies, is also the forestry ejido with a longer 

history of both natural and anthropogenic 

disturbances in its forest management area, being 

closer to the main urban and market center of the 

region (Felipe Carrillo Puerto). Noh Bec and 

Nueva Guadalajara, on the other hand, have a 

longer history and tradition of communal forest 

management and contain large areas with 

conserved forest cover, indicating that impacts 

from selective logging may be more difficult to 

detect and accuracies can become lower in more 

degraded forests compared to conserved forests.   

 

LANDSAT images have also been demonstrated 

by Souza and Barreto (2000) to successfully map 

selective logging areas in the Brazilian Amazon 

using pixel-based soil fraction methods to detect 

log landings and impacted areas surrounding 

them, obtaining accuracies ranging from 69 to 

80%.  A much larger scale of logging operations 

in Brazil may explain higher accuracies compared 

to this study. Moreover, the remote sensing 

techniques applied are more complex for its 

application by local foresters or organizations 

working with forestry communities on the 

Yucatan Peninsula. In the Bolivian Amazon, 

Broadbent et al. (2006) also map disturbance from 

selective logging using NDVI derived from 

ASTER images (30 m resolution), and in 

Myanmar, Win et al. (2009) successfully detect 

selective logging also using NDVI from 

LANDSAT. 

 

Furthermore, de Wasseige and Defourny (2004) 

detect selective logging impacts in tropical forests 

of the Central African Republic combining 

LANDSAT red, near infra-red (NIR) and mid-

infrared (MIR) bands, although they caution that 

satellite acquisition geometry can affect this 

detection, performing best at or close to nadir. In 

this study, the best indices for mapping impacts 

from selective logging in ejidos were NDVI and 

TCG, which are strongly correlated 

(Samarawickrama et al., 2017), however, DI and 

TCW performed better in Nueva Guadalajara. 

These results confirm the relevance of detecting 

biomass changes to map disturbance since NDVI, 

which combines near-infrared and red band 

reflectance values, has been shown to effectively 

model above-ground biomass (Lopez-Serrano et 

al., 2016; Günlü et al., 2014; Zheng et al., 2004). 
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Figure 2. Binary classifications of logged and un-logged areas obtained from each vegetation index for the 

ACAs of the four sampled ejidos. 
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Table 2. Overall, producer and user accuracies (%) of selectively logged and unlogged areas (95% 

confidence intervals in parenthesis) obtained for disturbance maps classified from vegetation indices 

(NDVI, DI, TCB, TCG, TCW).  

 

Ejido 
Veg. 

Index 

Overall 

Accuracy 

Logged areas Unlogged areas 

Producer 

Accuracy 

User 

Accuracy 

Producer 

Accuracy 

User Accuracy 

Noh Bec 

NDVI 
66.9 70 59.3 64.5 74.5 

(55.9-73.3) (60-79.9) (51.3-67.3) (58.8-70) (73-86) 

DI 
59.7 75 53.8 47.2 69.6 

(55.2-67.2) (64.9-85) (46.3-61.4) (40-54) (54-85.3) 

TCB 
58.9 44.4 57.5 71.5 59.7 

(51.5-66.3) (37-51.9) (48.4-66.6) (55.9-77) (49.9-70) 

TCG 
67.7 77.4 58.8 60.6 78.7 

(60.9-74.4) (67.5-87.2) (51-66.6) (54.9-66.4) (67-90.4) 

TCW 
64.8 75.8 59 55.6 73.2 

(58.1-71.5) (67.5-84) (60.9-73.2) (49.3-61.8) (61.6-84.8) 

Felipe Carrillo 

Puerto 

NDVI 
63.4 61.9 82.3 67.2 41.6 

(58.6-68.2) (58.2-65) (76.4-88.3) (58.8-75.7) (33.9-49.4) 

DI 
58.6 50.8 84.2 77.3 40.7 

(53.8-63.5) (47.3-54.3) (78.3-90) (70-84.6) (32.5-47) 

TCB 
55.7 61.6 71.7 41.5 31.1 

(50.7-60.8) (58.2-65) (64.9-78.5) (33.2-49.8) (23.5-38.5) 

TCG 
70.7 77.4 81 53.6 48.2 

(66-75.4) (74.1-80.7) (75.5-86.4) (45-62.1) (39-57.4) 

TCW 
62.1 70.1 75.4 42.1 35.7 

(57.1-67.1 (66.9-73.2) (69-81.8) (33.7-50) (27.7-43.6) 

Santa María 

Poniente 

NDVI 
66.3 68.5 68.6 63.7 63.7 

(59.6-73) (62.4-74.6) (58.7-78.4) (55.8-71.6) (54.8-72.5) 

DI 
42.2 64.1 46.3 18.1 31.4 

(35.2-49.2) (57.7-70) (46.3-53.9) (10.5-25.7) (16-46.8) 

TCB 
60.5 84.7 56.4 37.5 72 

(53.8-67.3) (78.3-91.2) (48.6-64.1) (31.4-43.5) (58.6-85.4) 

 

TCG 

62.8 73.8 60.6 51.7 66.2 

(56.1-69.5) (67.1-80.4) (51.9-69.3) (44.9-58.5) (55.6-76.7) 

TCW 
62 91.5 57 33.8 80.5 

(55.5-68.6) (86.2-96.7) (49.4-64.6) (28.4-39) (67.6-94.3) 

Nuevo 

Guadalajara 

NDVI 
67.5 42.4 96.6 98.2 58.2 

(61.6-73.3) (37.7-47) (90.2-100) (94.8-100) (50.8-65.6) 

DI 
68.7 50.7 80.3 87.2 63.3 

(62.4-75) (44.4-57) (70.3-90.3) (81.4-93) (55.2-71.3) 

TCB 
67 38 96.9 98.6 59.8 

(60.9-73) (33.4-42.5) (91-100) (96.2-100) (51.8-66.7) 

TCG 
68.5 48.5 84.3 90 61.7 

(62.2-74.7) (42.6-54.4) (74.3-94.2) (84.4-95.9) (53.9-69.5) 

TCW 
72.1 61.8 80.2 83.3 66.6 

(66-78.2) (55.5-68.2) (71-89.5) (76.6-90) (58.5-74.8) 
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Table. 3. Total area (ha), percentage of disturbance from selective logging (%) and area disturbed per 

cubic meter of timber extracted in ACAs (ha m-3).  

Ejido NDVI TCG TCW 

ha 

(%) 

[%]* 

ha m-3a ha 

(%) 

[%]* 

ha m-3a ha 

(%) 

[%]* 

ha m-3 

Felipe Carrillo Puerto 887 

(53.5) 

[66.4-76] 

0.5 1139.2 

(68.7) 

[67.1-76.6] 

0.7 1105.1  

(66.6) 

[66.7-76.7] 

0.7 

Noh Bec 390.7 

(50.1) 

[35.4-49.5] 

0.1 431 

(55.2) 

[35.2-48.9] 

0.1 458.2    

(58.7) 

[39-52.5] 

0.1 

Santa María Poniente 96.6      

(53.7) 

[46.9-60.3] 

0.1 110.1 

(61.6) 

[43.5-56.9] 

0.2 141     

(78.5) 

[42.4-55.6] 

0.2 

Nuevo Guadalajara 63.9 

(24.09) 

[49.2-60.9] 

0.1 79.3 

(29.8) 

[45.8-58.3] 

0.2 107     

(40.2) 

[46.1-58.4] 

0.2 

*Error adjusted proportion of disturbance from selective logging based on Olofsson accuracy assessment with 

reference points. 

 

 

Table 4. Accuracy assessment results for classifications of forest disturbance types in ACAs of each 

ejido.  
  OA ULL UFG UST ULR UF PLL PFG PST PLR PF 

N
o

h
 B

ec
 NDVI 23 100 95.9 0.5 21.3 20.5 100 7.4 2 100 100 

DI 28.6 100 96.8 1 18.5 19.6 100 15.2 1.9 100 97.9 

TCB 22.2 25 96.1 2.4 7.3 23.3 25.7 17 52.8 37.7 44.8 

TCG 43.5 100 94.1 1.1 12.7 27.9 100 31.9 1.9 100 95.2 

TCW 3.6 0.3 100 2.2 8.9 17.2 73.7 2.1 35.5 42 1.9 

F
el

ip
e 

C
ar

ri
ll

o
 

P
u

er
to

 

NDVI 32.1 2.3 74.4 3 0 44.2 17.2 4.6 13.4 0 86.3 

DI 31.2 8.1 61.5 16.7 7.4 48.6 74.3 6.3 8.9 80.8 72.7 

TCB 20.3 2.9 66.7 12.9 3.8 28.7 62.3 2.3 24.7 9.1 57.4 

TCG 29.2 1.2 69.3 12 6.5 10.5 14.7 40.2 13.5 60.3 3.6 

TCW 17.8 1.6 56.1 3 4.1 27.6 52.4 11.9 3.9 13.5 26.9 

S
an

ta
 M

ar
ía

 

P
o

n
ie

n
te

 NDVI 30.8 16.7 0 100 33.3 41.9 45.1 0 0.9 16.3 88.9 

DI 42.8 40 0 66.7 12.5 40.3 25.7 0 24.9 4.7 78.5 

TCB 29.7 4.3 0 48.5 9.1 41.7 15.3 0 21.6 6.7 47.1 

TCG 29.9 23.1 0 47.1 4.3 45.9 38.9 0 12.1 6.9 63.3 

TCW 30.3 11.1 0 39.6 4 44 13.1 0 15.3 7.6 57.7 

G
u

ad
al

aj
ar

a NDVI 31.3 7.7 100 6.5 4 46.1 100 3.7 15.7 29.7 98 

DI 11.5 1.4 95.2 2.3 5.9 20.9 100 4.5 29 14.6 27 

TCB 39 0.6 88.4 12.5 6.8 54.7 55.4 24.9 19.2 9.8 78.5 

TCG 42.3 1.3 84.9 8.7 100 49.5 100 22.3 19.9 5.8 95 

TCW 36.9 0.6 87.4 8.7 10.5 55.5 56.6 16.9 16 16.9 85.8 

 

OA.- Overall Accuracy; ULL.- User Accuracy Log Landing; UFG.- User Accuracy Felling Gaps; UST.- 

User Accuracy Skid Trail; ULR.- User Accuracy Logging Road; UF.- User Accuracy Forest; PLL.- Producer 

Accuracy Log Landing; PFG.- Producer Accuracy Felling Gaps; PST.- Producer Accuracy Skid Trail; PLR.- 

Producer Accuracy Logging Road; PF.- Producer Accuracy Forest. 
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Figure 3. Classification of forest disturbance categories from selective logging (e.g. log landing, skid trail, 

logging road, felling gap and un-logged forest) obtained from each vegetation index for the ACAs of the four 

sampled ejidos. 

 
 

 

Similar studies in temperate evergreen forests 

demonstrated that DI and TCW were better 

indicators of forest disturbance from logging 

(Neigh et al., 2014; Hais et al., 2009; Jin and 

Sader, 2005). In these cases, vegetation moisture 

plays a greater role in discriminating disturbance 

considering that both indices include “wetness”. 

Nueva Guadalajara, being furthest south of all 

sampled ejidos, is also located in an area with 

greater precipitation and moisture, indicating that 

DI and TCW may perform better in wetter 

conditions.  

 

Timing in detecting and mapping disturbance 

from selective logging is also crucial since 

vegetation recovery can occur quickly, sometimes 

becoming undistinguishable from unlogged 

forests in medium resolution satellite images as 

soon as 3 to 6 months after harvesting in Bolivia 

(Broadbent et al. 2006) or 1 to 2 years in the 

Brazilian Amazon (Souza and Barreto 2000). 

Thus, many authors recommend that images 

should be evaluated no later than 1 year after 

harvesting to successfully detect disturbance from 

logging (Stone and Lefebvre, 1998; de Wasseige 

and Defourny, 2004). In our study region, this 

may have to be much sooner (<1 year) 

considering the high resiliency of forests on the 

Yucatan Peninsula (Turner, 1978) as well as lower 

timber harvest intensities compared to other 

tropical forest regions.  

Mapped disturbance from selective logging in 

ACAs also indicate differences in the application 

of IFM and RIL practices. Noh Bec, a FSC 

certified ejido, implements both IFM and RIL 
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(e.g. direct felling, skid trail and harvest 

planning), but also has a large ACA and high 

logging intensity, but impacted a small proportion 

of its ACA (around 50%) and had a low harvest 

impact (0.1 ha·m3). In comparison, Felipe Carrillo 

Puerto, without RIL practices, with the largest 

ACA, and the lowest harvest intensity, impacted a 

greater proportion of their ACA (around 70%) and 

had the highest harvest impact (0.7 ha·m3), 

notwithstanding its very low logging intensity. 

These results possibly point to differences in 

disturbance impacts between ejidos implementing 

IFM and those that don´t. A similar result was 

found for the ejidos with smaller ACAs, Nuevo 

Guadalajara and Santa María Poniente. A much 

lower proportion of mapped disturbance (around 

30%) was observed for Nuevo Guadalajara which 

implements RIL practices, compared to Santa 

Maria (around 60%) that doesn´t, despite both 

having similar harvest volumes and logging 

intensities. In great part, this may be explained by 

the use of a modified agricultural tractor for 

timber extraction (skidding) in Nueva Guadalajara 

instead of a conventional skidder which is larger 

and heavier, causing greater forest disturbance.  

This study exemplifies the potential to detect and 

map selective logging disturbances in ejidos on 

the Yucatan Peninsula using LANDSAT 8 OLI 

images, which can also be applied to assess and 

monitor forest degradation. Monitoring 

degradation has been especially crucial to 

pursuing REDD+ goals, and specifically to 

implement their monitoring, reporting and 

verification (MRV) system (Angelsen et al., 2009) 

in collaborating countries such as Mexico. 

However, degradation has certainly proven to be a 

much greater challenge to monitor than 

deforestation, considering that forest cover is still 

maintained, and changes in forest cover may be 

very subtle (Herold and Skutsch, 2011). 

Consequently, MRV of degradation processes was 

distinguished as a separate necessity by REDD+, 

in addition to MRV of deforestation, and 

specifically associated to monitoring within forest 

activities, such as logging, firewood collection and 

others (Morales-Barquero et al. 2014; Herold and 

Skutsch, 2011). A combination of both remote 

sensing and field-based methods, as applied in this 

study, has been recommended as the most cost-

effective means to achieve this (Goetz et al., 

2015). In addition, IFM and RIL have been 

recently promoted to reduce forest impacts and 

carbon emissions from selective logging in the 

tropics and thus reduce potential degradation in 

managed forests (Angelsen et al., 2009; Griscom 

et al., 2009). On the Yucatan Peninsula, RIL 

practices can reduce carbon emissions from 

selective logging by almost half a ton per m3 of 

timber extracted (Ellis et al. 2019). This research 

also demonstrated by mapping disturbance that 

ejidos that implemented RIL practices can reduce 

up to 40% of the forest damaged by selective 

logging, for example by using a modified 

agricultural tractor to extract timber. Forest 

managers, technicians or NGOs can easily 

implement the methods described in this study 

(i.e. combining remote sensing and field-based 

validation points) to assess improvements in 

reducing impacts and carbon emissions from 

implementing RIL and IFM in their ejido. 

However, the application of LANDSAT 8 OLI 

images to discriminate forest disturbance from 

specific selective logging practices (e.g. felling, 

skidding and transporting timber) was not 

possible. In the Brazilian Amazon, the ability to 

identify forest impacts from log landings greater 

than 900 m2 and areas impacted by roads, skid 

trails and tree felling in a 350 m radius was 

possible; however, they also failed to differentiate 

impacts from specific harvest activities  (Monteiro 

and Souza, 2003). In the Bolivian Amazon, 

Broadbent et al. (2006) finds that impacts from 

felling gaps must be greater than 400 m2 to be 

distinguished from unlogged forest using ASTER 

images (30 m resolution). This is similar to what 

is feasible using LANDSAT imagery despite 

better spatial and spectral resolution. Arevalo et 

al., (2016) also claim that impacts from specific 

selective logging operations can be very difficult 

to distinguish using LANDSAT images, 

particularly when harvest intensities are low. 

Lower intensity logging practices in temperate 

forest are also more difficult to identify; in British 

Columbia, Canada, for example, producer 

accuracies obtained from TCG of LANDSAT 

images showed clear cuts and residual cuts were 

much easier to map (83 and 79% respectively) in 

contrast to partial cuts (63%) where harvesting 

intensity is much lower (Jarron et al. 2017).  

As would be expected, due to greater removal of 

the forest canopy in log landings and logging 

roads, they were the specific disturbances most 

accurately mapped. In some cases, producer 

accuracies for log landings and logging roads 

were above 90% such as in Noh Bec where new 
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log landings and roads were established within the 

ACA. Low producer and user accuracies for 

logging roads were obtained in ejidos where older 

logging roads were re-used, and which tend to 

have more canopy coverage, as was the case in 

Nuevo Guadalajara. Distinguishing specific 

disturbances caused from felling and skidding 

proved to be the most difficult using LANDSAT 8 

OLI images, and producer and user accuracies for 

skid trails were generally low in all ejidos. The 

lower harvest intensities on the Yucatan Peninsula 

may explain these poor results, for example felling 

gaps in the region may vary in size from 100 to 

300 m2, which is smaller than the minimum of 400 

m2 claimed to be needed to detect felling impacts 

using ASTER 30 m resolution imagery in the 

Amazon (Broadbent et al., 2006). While skidding 

logs do create impacts on understory vegetation 

and smaller diameter trees (< 20 cm dbh), 

sufficient canopy cover of remaining larger trees 

may make detection and mapping of skid trails 

difficult. Also, the fact that felled trees are mostly 

no more than 20 m from the nearest skid trail in 

our study area, makes it difficult to distinguish 

between felling and skidding impacts. 

Furthermore, as mentioned above, the use of a 

modified agricultural tractor in the case of Nuevo 

Guadalajara may also affect the detection of skid 

trails, having the lowest producer and user 

accuracies for mapping skid trails.  

For these reasons, the use of LANDSAT 8 OLI 

images to map and monitor impact reductions 

from specific harvest or RIL practices (e.g. 

directional felling, use of a winch with a long 

cable and skid trail planning) is not recommended 

without the compliment of ground mapping, 

higher resolution imagery and/or LIDAR data. For 

example, Read (2003) clearly demonstrates that 

IKONOS high resolution images (4 m) were much 

more successful in detecting skid trails and felling 

gaps than LANDSAT, which were successful in 

detecting only major logging features in 

selectively logged forest of Brazil. Asner et al. 

(2010) use airborne LIDAR to successfully 

differentiate selective logging impacts from 

timber harvesting in the Peruvian Amazon, and 

Ellis et al. (2016) also show how airborne LIDAR 

data could accurately map (98%) selective logging 

impacts in East Indonesia. Impacts within 

harvested cutting blocks amounted to 69% in the 

Indonesian selectively logged tropical forests, 

similar to the proportion impacted in Felipe 

Carrillo Puerto, but higher than the other ejidos of 

this study. Despite the high precision obtained in 

mapping impacts from selective logging in 

Indonesia using LIDAR data, impacts from 

disturbance caused by skid trails were also 

difficult to distinguish, with only a 59% 

agreement. Our study also demonstrated poor user 

and producer accuracies in distinguishing 

selective logging impacts from skid trails. 

However, combining all disturbance types raises 

the accuracy of mapping forest disturbance from 

selective logging and can provide accurate 

mapping of the overall forest impacts from 

harvesting operations.  

 

CONCLUSION 

 

Our study showed that up to 70% accuracy was 

obtained using LANDSAT 8 OLI to detect and 

map forest disturbance impacts from selective 

logging on the Yucatan Peninsula. However, field 

sampling and validation is necessary to guide and 

evaluate the mapping process. Mapping 

disturbances from specific harvesting practices 

was much less reliable with very low accuracies 

(< 43%), requiring high resolution imagery or 

LIDAR data to improve accuracy. This study also 

showed that the ejidos applying IFM and RIL can 

potentially reduce disturbance from selective 

logging in their ACAs by up to 50%, while also 

increasing harvest volumes. Forest impacted per 

m3 of timber extracted can be reduced from 0.7 to 

0.1 ha by applying RIL practices, particularly 

using a modified agricultural tractor instead of a 

skidder to extract timber. The methodology 

presented can be easily performed by local 

foresters and forestry ejidos using open-access 

GIS and remote sensing software to monitor 

potential degradation and assess impact reductions 

by applying IFM and RIL practices. 
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