INTRODUCTION

American Trypanosomiasis, also known as Chagas disease, is a parasitic disease caused by Trypanosoma cruzi and is endemic to the American continent, from the south of the United States of America to Argentina and Chile. It is considered a serious health problem with an estimate of 15 million people infected (OMS, 2007). The Chagas disease is considered endemic in several regions of Mexico (Ramsey et al., 2003). The infection is maintained by more than 150 domestic and wild animals and transmitted from infected to...
susceptible animals through the bite of triatomine insects (Días, 2000). The backyard of the houses, especially in rural communities of Mexico, represents a very complex system where plants and animals are kept for consumption of families (Ruiz-Piña y Reyes-Novelo, 2012). Many different animal species can be found in the system but domestic fowl and pigs are the commonest, with cattle, sheep, horses and other minor species like rabbits are host as well (Acosta-Casanova, 2004). The role that backyard mammals of rural households could play in the maintaining of peridomestic transmission of T. cruzi, has not been investigated in Yucatan; the habitat conditions found in the rural backyard system clearly favor the presence of the triatomine vector, probably representing an important source of blood, and consequently a risk for people living in the same environment (Ruiz-Piña et al., 2013). Previous studies in the Yucatan peninsula have reported the circulation of T. cruzi in rural peridomicile, both in synanthropic mammals as opossums, and in livestock kept in backyard (Ruiz-Piña and Cruz-Reyes, 2002; Duarte-Ubaldo, 2005; Jiménez-Coello et al. 2012).

The objective of this study was to determine the prevalence of infection in mammals kept in the backyard system, in order to go further into the knowledge of dynamics of T. cruzi transmission in households of rural communities of Yucatan, Mexico.

MATERIALS AND METHODS

Area of study

The study was carried out in the community of Molas, Yucatan, Mexico, located 16 km South of Merida capital city of the state of Yucatan, at 20° 48’ 58.54” LN and 89° 37’ 45.43” LW.

Diagnostic tests were carried out in the “Laboratorio de Zoonosis y otras Enfermedades Transmitidas por Vector” of the Centro de Investigaciones Regionales (CIR) “Dr. Hideyo Noguchi”, of Universidad Autonoma de Yucatan.

Study population

As part of a larger study on zoonosis diseases in a rural community of Yucatan, Mexico, 156 out of 300 houses in the community were visited, 33 of them had backyard animals but only in 16 of them it was possible to obtain blood samples from animals. In some cases, owners did not authorize to include their animals in the study.

A total of 84 backyard animals distributed in 16 houses were sampled. Five milliliters of blood were obtained from cattle (28), sheep (7), horses (8) and pigs (28) from the jugular vein, but in the case of rabbits (13) one milliliter was obtained from the auricular vessels. Blood was placed in tubes with EDTA and kept refrigerated (4 °C) until the tests were performed. All procedures were followed accordingly with NOM-062-ZOO-1999 for animal care.

Diagnostic test

To detect the presence of T. cruzi in blood samples a polymerase chain reaction test (PCR) was carried using the methodology described by Monteón et al. (1994). This methodology uses primers KNS1 and KNS2 designed from kinetoplast sequence, this reaction has proved higher sensitivity than other methods, with 100% sensitivity and 86% specificity.

DNA was extracted from the samples using common method previously described. Briefly, 80 µl of sterile water (Baxter) were mixed with 20 µl of sample (dilution 1:5), then the mixture was heated at 95 °C for 10 minutes and then centrifuged to maximum (approximately 15000 x g) in an microfuge for 5 min; afterwards, 8 µl of supernatant were placed in a new PCR tube with 10 µl of the master mix (Gotaq Green Master Mix 2x, Promega, Madison, WI, USA) and 1 µl (10 pmol) of each of the primers to give a final volume of 20 µl. After that, the amplification program, consisting of 35 cycles of 92 °C for 1 minute, 56 °C for 2 minutes and 72 °C for 1 minute was run in a Bio-RadiCycler thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA). This program also includes a denaturing step before de cycles at 95 °C for 3 min and an additional step after, at 72 °C for 10 min.

PCR products were electrophoresed in a molecular biology grade agarose gel (1.2 %) and stained with ethidium bromide (10 µg/ml). A DNA weight marker Sigma ΦX174 DNA/Hae III Marker (Sigma-Aldrich Mexico, DF, Mexico) was included on each electrophoresis run. Electric current was applied at 100 volts for 25 minutes and fragments visualized in a UV light transilluminator (UVP, Upland, CA, USA) at 330 nm and the image documented with EDAS 290 1D Gel documentation system v. 3.5 from Kodak (Scientific Imaging Systems, Rochester, NY, USA).

Data Analysis

The prevalence of infection for each animal species was obtained using formula described by Thrusfield (2007).

RESULTS AND DISCUSSION

Thirty five out of 84 samples were positive (42 %) for the amplification of PCR products corresponding to T. cruzi (Figure 1). Total results for T. cruzi infection prevalence in all mammal species analyzed are
Novel and preliminary findings were obtained in the present study, especially regarding sheep and horses with the highest *T. cruzi* infection prevalence (85.7% and 100% respectively). According to Noireau (1999) these animal species generally present low indices of infection and do not play an important role as hosts; however, despite the small number of animals tested in this study, our results obligate us to continue the research in order to determine if that these species could play a part in the maintenance of *T. cruzi* in the backyard system. Pigs also shown a high prevalence of *T. cruzi* infection, the only previous report of pigs naturally infected in Mexico was published by Salazar-Schettino *et al.* (1997) and Jiménez-Coello *et al.* (2012). Nonetheless, the later study showed low seroprevalence in pig farms, making the finding of this study relevant, since backyard pigs apparently had higher prevalence, probably because of *T. cruzi* cycle established in the peridomicile, including other domesticated and synanthropic mammals and infected *T. dimidiata* vectors in the locality (Koyoc-Cardeña *et al.*, 2015). The potential role of horses, pigs and sheep in the cycle of *T. cruzi* in the backyard system of rural communities in Mexico, needs further investigation.

In relation to the relative importance of larger mammals as hosts for *T. cruzi*, Noireau (1999) argued that there is a negative correlation between body size and infection index with *T. cruzi*, suggesting short infection rates and duration in large compared to small animals. Other researchers claim that cattle could be a host for the parasite (Fujita *et al.*, 1994). The different prevalence data found for different animal species could also have been influenced by the feeding preferences of the insect vector. Many animal species have been found to be a source of food for *Triatoma dimidiata*, the main vector for *T. cruzi* in Yucatan, Mexico (Reyes-Novelo *et al.*, 2011). Chickens, turkeys, cattle, horses, pigs, dogs, rats, opossums and humans have been reported as source of food for the insect (González-Angulo and Ryckman, 1967; Christiansen *et al.*, 1988). Considering the generalist feeding behavior of *T. dimidiata* (Zeledón, 1981), backyard animals support peridomicile populations acting as feeding hosts, and at the same time, potential hosts for the maintenance of *T. cruzi* peridomicile infection (Reyes-Novelo *et al.*, 2013; Koyoc-Cardeña *et al.*, 2015).

Table 1. Prevalence of infection by *Trypanosoma cruzi* in backyard mammals of rural households from Molas, Yucatan, Mexico.

<table>
<thead>
<tr>
<th>Backyard Mammal species</th>
<th>Tested animals (number)</th>
<th>Positive (number)</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigs</td>
<td>28</td>
<td>21</td>
<td>75%</td>
</tr>
<tr>
<td>Sheep</td>
<td>7</td>
<td>6</td>
<td>85.71%</td>
</tr>
<tr>
<td>Horses</td>
<td>8</td>
<td>8</td>
<td>100%</td>
</tr>
<tr>
<td>Cattle</td>
<td>28</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Rabbits</td>
<td>13</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>35</td>
<td>42%</td>
</tr>
</tbody>
</table>

Figure 1. PCR results for *Trypanosoma cruzi* from backyard animal species of the community of Molas, Yucatan, Mexico. DNA bands of 188 bp were considered positive. Columns 1-4 are from negative rabbits, 5 is from a negative sheep, 6 from negative cattle, 7-12 from positive pigs and 18-28 from negative cattle, (+) positive control, (M) molecular weight marker (arrow).

All animal species analyzed and others like sheep, cats and rabbits are present in the backyard system of Molas, Yucatan, and are raised in close proximity to human beings. More studies on the specific role of...
infected animal species regarding the cycle of *T. cruzi*, are necessary to understand the rural epidemiology of Chagas disease in the backyard system. Special attention must be paid for future research in the potential role of pigs and horses because their economic importance and abundance in the backyard of rural houses in Yucatan (Gutiérrez-Ruiz et al., 2013).

CONCLUSION

The results obtained constitute an important preliminary evidence to implicate backyard mammals as potential maintaining hosts of *T. cruzi* in the peridomestic habitat of rural communities in Yucatan.

REFERENCES

Rey, J., Kobylinski, K., Rutledge Connelly R. 2006. La Tripanosomiasis Americana – Mal de Chagas, UF University of Florida. pp 1-4

